Skip to main content

Advertisement

Log in

Recent advances in eco-friendly composites derived from lignocellulosic biomass for wastewater treatment

  • Review Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

In recent decades, the greatest challenge facing the world has been protecting the environment from various forms of pollution. Water pollution is one of the most crucial environmental problems threatening living organisms’ lives and human health. Mostly anthropogenic, it undoubtedly originates from diverse sources, including agricultural, domestic, and industrial activities. Therefore, adopting sustainable and environmentally friendly practices constitutes an ideal solution for purifying contaminated water to be further used in industrial activities and so on. The valorization of lignocellulosic biomass for the production and conception of value-added products is an attractive and environmentally friendly way of preserving the environment. Lignocellulosic biomass, such as crops, agricultural wastes, forest residues, etc., is a sustainable and plentiful resource that can be valorized and used as robust material for eliminating different pollutants from sewage, including organic pollutants, heavy metals, inorganic compounds, and microorganisms. Indeed, the valorization of biomass wastes is among the most intelligent strategies. It is like killing two birds with one stone: reducing the quantity of biomass waste and benefiting from its physicochemical properties. Feedstocks are rich in cellulose, hemicellulose, and lignin, which have already been proven efficiency in removing persistent pollutants. Moreover, it can undergo physical, chemical, and thermal to prepare cellulose nanocrystals and biochar with high removal ability. The current review discusses the exploitation of lignocellulosic biomass to produce composite materials in the applications of wastewater purification, especially for the removal of different persistent organic and inorganic contaminants. It highlights the recent research studies and the mechanisms involved in eliminating pollutants using lignocellulosic-based materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Margot J, Rossi L, Barry DA, Holliger C (2015) A review of the fate of micropollutants in wastewater treatment plants. WIREs Water 2:457–487. https://doi.org/10.1002/wat2.1090

    Article  Google Scholar 

  2. Korotta-Gamage SM, Sathasivan A (2017) A review: potential and challenges of biologically activated carbon to remove natural organic matter in drinking water purification process. Chemosphere 167:120–138. https://doi.org/10.1016/j.chemosphere.2016.09.097

    Article  Google Scholar 

  3. Gedda G, Balakrishnan K, Devi RU, Shah KJ (2021) Introduction to conventional wastewater treatment technologies: limitations and recent advances. In: Advances in Wastewater Treatment I Ed RESEARCH FORUM LLC, USA.

  4. Elgarahy AM, Elwakeel KZ, Mohammad SH, Elshoubaky GA (2021) A critical review of biosorption of dyes, heavy metals and metalloids from wastewater as an efficient and green process. Clean Eng Technol 4:100209. https://doi.org/10.1016/j.clet.2021.100209

    Article  Google Scholar 

  5. Galal-Gorchev H (1993) WHO guidelines for drinking-water quality

  6. Fan D, Lu Y, Zhang H et al (2021) Synergy of photocatalysis and photothermal effect in integrated 0D perovskite oxide/2D MXene heterostructures for simultaneous water purification and solar steam generation. Appl Catal B Environ 295.https://doi.org/10.1016/j.apcatb.2021.120285

  7. Al AH, Kochkodan V, Hilal N (2013) Hybrid ion exchange - pressure driven membrane processes in water treatment: a review. Sep Purif Technol 116:253–264. https://doi.org/10.1016/j.seppur.2013.05.052

    Article  Google Scholar 

  8. Khan ST, Malik A (2019) Engineered nanomaterials for water decontamination and purification: from lab to products. J Hazard Mater 363:295–308. https://doi.org/10.1016/j.jhazmat.2018.09.091

    Article  Google Scholar 

  9. Sordello F, Berruti I, Gionco C et al (2019) Photocatalytic performances of rare earth element-doped zinc oxide toward pollutant abatement in water and wastewater. Appl Catal B Environ 245:159–166. https://doi.org/10.1016/j.apcatb.2018.12.053

    Article  Google Scholar 

  10. Chkirida S, Zari N, Achour R et al (2021) Highly synergic adsorption/photocatalytic efficiency of alginate/bentonite impregnated TiO2 beads for wastewater treatment. J Photochem Photobiol A Chem 412:113215. https://doi.org/10.1016/j.jphotochem.2021.113215

    Article  Google Scholar 

  11. Amoatey P, Bani R (2011) Wastewater management. In: Waste water - evaluation and management

  12. El Allaoui B, Chakhtouna H, Zari N, Bouhfid R (2022) Recent developments in functionalized polymer NF membranes for biofouling control. Emergent Mater. https://doi.org/10.1007/s42247-022-00367-x

    Article  Google Scholar 

  13. Singh NB, Nagpal G, Agrawal S, Rachna (2018) Water purification by using adsorbents: a review. Environ Technol Innov 11:187–240. https://doi.org/10.1016/j.eti.2018.05.006

    Article  Google Scholar 

  14. Kyzas GZ, Siafaka PI, Kostoglou M, Bikiaris DN (2016) Adsorption of As(III) and As(V) onto colloidal microparticles of commercial cross-linked polyallylamine (Sevelamer) from single and binary ion solutions. J Colloid Interface Sci 474:137–145. https://doi.org/10.1016/j.jcis.2016.04.027

    Article  Google Scholar 

  15. Saxena A, Bhardwaj M, Allen T et al (2017) Adsorption of heavy metals from wastewater using agricultural–industrial wastes as biosorbents. Water Sci 31:189–197. https://doi.org/10.1016/j.wsj.2017.09.002

    Article  Google Scholar 

  16. Igwe JC, Abia AA (2006) A bioseparation process for removing heavy metals from waste water using biosorbents. Afr J Biotechnol 5:1167–1179. https://doi.org/10.4314/ajb.v5i11.43005

    Article  Google Scholar 

  17. Asemave K, Thaddeus L, Tarhemba PT (2021) Lignocellulosic-based sorbents: a review. Sustain Chem 2:271–285. https://doi.org/10.3390/suschem2020016

    Article  Google Scholar 

  18. Chakhtouna H, Zari N, Bouhfid R et al (2021) Novel photocatalyst based on date palm fibers for efficient dyes removal. J Water Process Eng 43:102167. https://doi.org/10.1016/j.jwpe.2021.102167

    Article  Google Scholar 

  19. Liu Y, Nie Y, Lu X et al (2019) Cascade utilization of lignocellulosic biomass to high-value products. Green Chem 21:3499–3535. https://doi.org/10.1039/c9gc00473d

    Article  Google Scholar 

  20. Qureshi UA, Hameed BH, Ahmed MJ (2020) Adsorption of endocrine disrupting compounds and other emerging contaminants using lignocellulosic biomass-derived porous carbons: a review. J Water Process Eng 38:101380. https://doi.org/10.1016/j.jwpe.2020.101380

    Article  Google Scholar 

  21. Loow YL, Wu TY, Jahim JM et al (2016) Typical conversion of lignocellulosic biomass into reducing sugars using dilute acid hydrolysis and alkaline pretreatment. Cellulose 23:1491–1520. https://doi.org/10.1007/s10570-016-0936-8

    Article  Google Scholar 

  22. Karimah A, Ridho MR, Munawar SS et al (2021) A review on natural fibers for development of eco-friendly bio-composite: characteristics, and utilizations. J Mater Res Technol 13:2442–2458. https://doi.org/10.1016/j.jmrt.2021.06.014

    Article  Google Scholar 

  23. Kucharska K, Rybarczyk P, Hołowacz I et al (2018) Pretreatment of lignocellulosic materials as substrates for fermentation processes. Molecules 23:1–32. https://doi.org/10.3390/molecules23112937

    Article  Google Scholar 

  24. Peng B, Yao Z, Wang X et al (2020) Cellulose-based materials in wastewater treatment of petroleum industry. Green Energy Environ 5:37–49. https://doi.org/10.1016/j.gee.2019.09.003

    Article  Google Scholar 

  25. Syazwani N, Rahman A, Firdaus M, Baharin Y (2018) Utilisation of natural cellulose fibres in wastewater treatment. Cellulose 25:4887–4903. https://doi.org/10.1007/s10570-018-1935-8

    Article  Google Scholar 

  26. Kyzas GZ, Christodoulou E, Bikiaris DN (2018) Basic dye removal with sorption onto low-cost natural textile fibers. Processes 6.https://doi.org/10.3390/pr6090166

  27. Khatri N, Tyagi S (2015) Influences of natural and anthropogenic factors on surface and groundwater quality in rural and urban areas. Front Life Sci 8:23–39. https://doi.org/10.1080/21553769.2014.933716

    Article  Google Scholar 

  28. Yadav D, Singh S, Sinha R (2021) Microbial degradation of organic contaminants in water bodies. In: Pollutants and water management. John Wiley & Sons Ltd, pp 172–209

  29. Rajasulochana P, Preethy V (2016) Comparison on efficiency of various techniques in treatment of waste and sewage water – a comprehensive review. Resour Technol 2:175–184. https://doi.org/10.1016/j.reffit.2016.09.004

    Article  Google Scholar 

  30. Bolisetty S, Peydayesh M, Mezzenga R (2019) Sustainable technologies for water purification from heavy metals: review and analysis. Chem Soc Rev 48:463–487. https://doi.org/10.1039/c8cs00493e

    Article  Google Scholar 

  31. Naidoo S, Olaniran AO (2013) Treated wastewater effluent as a source of microbial pollution of surface water resources. Int J Environ Res Public Health 11:249–270. https://doi.org/10.3390/ijerph110100249

    Article  Google Scholar 

  32. Breida M, Alami Younssi S, Ouammou M et al (2020) Pollution of water sources from agricultural and industrial effluents: special attention to NO, Cr(VI), and Cu(II). In: Water Chemistry. IntechOpen, London

  33. Al-Gheethi AA, Efaq AN, Bala JD et al (2018) Removal of pathogenic bacteria from sewage-treated effluent and biosolids for agricultural purposes. Appl Water Sci 8:1–25. https://doi.org/10.1007/s13201-018-0698-6

    Article  Google Scholar 

  34. Chakhtouna H, Benzeid H, Zari N et al (2021) Recent progress on Ag/TiO2 photocatalysts: photocatalytic and bactericidal behaviors. Environ Sci Pollut Res 28:44638–44666. https://doi.org/10.1007/s11356-021-14996-y

    Article  Google Scholar 

  35. Aghalari Z, Dahms HU, Sillanpää M et al (2020) Effectiveness of wastewater treatment systems in removing microbial agents: a systematic review. Glob Health 16:1–11. https://doi.org/10.1186/s12992-020-0546-y

    Article  Google Scholar 

  36. Akpor OB, Otohinoyi DA, Olaolu TD, Aderiye BI (2014) Pollutants in wastewater: impacts and remediation process. J Hell Vet Med Soc 65:115–120

    Google Scholar 

  37. Hussain S, Khan N, Gul S et al (2020) Contamination of water resources by food dyes and its removal technologies. Water Chem. https://doi.org/10.5772/intechopen.90331

    Article  Google Scholar 

  38. Lellis B, Fávaro-Polonio CZ, Pamphile JA, Polonio JC (2019) Effects of textile dyes on health and the environment and bioremediation potential of living organisms. Biotechnol Res Innov 3:275–290. https://doi.org/10.1016/j.biori.2019.09.001

    Article  Google Scholar 

  39. Chakhtouna H, Benzeid H, Zari N et al (2021) Functional CoFe2O4-modified biochar derived from banana pseudostem as an efficient adsorbent for the removal of amoxicillin from water. Sep Purif Technol:118592.https://doi.org/10.1016/j.seppur.2021.118592

  40. Ivanković K, Kern M, Rožman M (2021) Modelling of the adsorption of pharmaceutically active compounds on carbon-based nanomaterials. J Hazard Mater 414.https://doi.org/10.1016/j.jhazmat.2021.125554

  41. Patel AB, Shaikh S, Jain KR et al (2020) Polycyclic aromatic hydrocarbons: sources, toxicity, and remediation approaches. Front Microbiol 11.https://doi.org/10.3389/fmicb.2020.562813

  42. Jarjoui M, Geahchan A, Boutros E, Abou-Kaïs A (2000) Pollution des eaux souterraines par les hydrocarbures aromatiques polycycliques et évaluation du risque. La Houille Blanche 86:89–92. https://doi.org/10.1051/lhb/2000080

    Article  Google Scholar 

  43. Huang L, Zhu X, Zhou S et al (2021) Phthalic acid esters: natural sources and biological activities. Toxins (Basel) 13.https://doi.org/10.3390/toxins13070495

  44. He L, Gielen G, Bolan NS et al (2015) Contamination and remediation of phthalic acid esters in agricultural soils in China: a review. Agron Sustain Dev 35:519–534. https://doi.org/10.1007/s13593-014-0270-1

    Article  Google Scholar 

  45. Xiaoyan T, Suyu W, Yang Y et al (2015) Removal of six phthalic acid esters (PAEs) from domestic sewage by constructed wetlands. Chem Eng J 275:198–205. https://doi.org/10.1016/j.cej.2015.04.029

    Article  Google Scholar 

  46. Aktar W, Sengupta D, Chowdhury A (2009) Impact of pesticides use in agriculture: their benefits and hazards. Interdiscip Toxicol 2:1–12. https://doi.org/10.2478/v10102-009-0001-7

    Article  Google Scholar 

  47. Sharma N, Singhvi R (2017) Effects of chemical fertilizers and pesticides on human health and environment: a review. Int J Agric Environ Biotechnol 10:675. https://doi.org/10.5958/2230-732x.2017.00083.3

    Article  Google Scholar 

  48. Silva M, Azenha ME, Pereira MM et al (2010) Immobilization of halogenated porphyrins and their copper complexes in MCM-41: environmentally friendly photocatalysts for the degradation of pesticides. Appl Catal B Environ 100:1–9. https://doi.org/10.1016/j.apcatb.2010.07.033

    Article  Google Scholar 

  49. Kroiss H, Rechberger H, Egle L (2011) Phosphorus in water quality and waste management. In: Integrated waste management - volume II. IntechOpen, London

  50. Bunce JT, Ndam E, Ofiteru ID et al (2018) A review of phosphorus removal technologies and their applicability to small-scale domestic wastewater treatment systems. Front Environ Sci 6:1–15. https://doi.org/10.3389/fenvs.2018.00008

    Article  Google Scholar 

  51. Seruga P, Krzywonos M, Pyzanowska J et al (2019) Removal of ammonia from the municipal waste treatment effuents using natural minerals. Molecules 24.https://doi.org/10.3390/molecules24203633

  52. Hamdan R, Ibrahim II, Haron SZ (2015) Ammonia nitrogen removal from domestic wastewater via nitrification process using aerated rock filter. Appl Mech Mater 773–774:1350–1354. https://doi.org/10.4028/www.scientific.net/amm.773-774.1350

    Article  Google Scholar 

  53. Fisher RM, Alvarez-Gaitan JP, Stuetz RM, Moore SJ (2017) Sulfur flows and biosolids processing: using material flux analysis (MFA) principles at wastewater treatment plants. J Environ Manage 198:153–162. https://doi.org/10.1016/j.jenvman.2017.04.056

    Article  Google Scholar 

  54. Agoro MA, Adeniji AO, Adefisoye MA, Okoh OO (2020) Heavy metals in wastewater and sewage sludge from selected municipal treatment plants in eastern cape province, south africa. Water (Switzerland) 12.https://doi.org/10.3390/w12102746

  55. Renu AM, Singh K (2017) Heavy metal removal from wastewater using various adsorbents: a review. J Water Reuse Desalin 7:387–419. https://doi.org/10.2166/wrd.2016.104

    Article  Google Scholar 

  56. Akpor OB (2014) Heavy metal pollutants in wastewater effluents: sources, effects and remediation. Adv Biosci Bioeng 2:37. https://doi.org/10.11648/j.abb.20140204.11

    Article  Google Scholar 

  57. Biosci IJ, Alfarra RS, Ali NE et al (2014) Removal of heavy metals by natural adsorbent: review. Int J Biosci 6655:130–139. https://doi.org/10.12692/ijb/4.7.130-139

    Article  Google Scholar 

  58. Fu F, Wang Q (2011) Removal of heavy metal ions from wastewaters: a review. J Environ Manage 92:407–418

    Article  Google Scholar 

  59. Dutta S, Gupta B, Srivastava SK, Gupta AK (2021) Recent advances on the removal of dyes from wastewater using various adsorbents: a critical review. Mater Adv 2:4497–4531. https://doi.org/10.1039/d1ma00354b

    Article  Google Scholar 

  60. Elbasiouny H, Darwesh M, Elbeltagy H et al (2021) Ecofriendly remediation technologies for wastewater contaminated with heavy metals with special focus on using water hyacinth and black tea wastes: a review. Environ Monit Assess 193.https://doi.org/10.1007/s10661-021-09236-2

  61. Jun BM, Lee HK, Park S, Kim TJ (2022) Purification of uranium-contaminated radioactive water by adsorption: a review on adsorbent materials. Sep Purif Technol 278:119675. https://doi.org/10.1016/j.seppur.2021.119675

    Article  Google Scholar 

  62. Rashid R, Shafiq I, Akhter P et al (2021) A state-of-the-art review on wastewater treatment techniques: the effectiveness of adsorption method. Environ Sci Pollut Res 28:9050–9066. https://doi.org/10.1007/s11356-021-12395-x

    Article  Google Scholar 

  63. Berger AH, Bhown AS (2011) Comparing physisorption and chemisorption solid sorbents for use separating CO2 from flue gas using temperature swing adsorption. Energy Procedia 4:562–567. https://doi.org/10.1016/j.egypro.2011.01.089

    Article  Google Scholar 

  64. Rathi BS, Kumar PS (2021) Application of adsorption process for effective removal of emerging contaminants from water and wastewater. Environ Pollut 280:116995. https://doi.org/10.1016/j.envpol.2021.116995

    Article  Google Scholar 

  65. Zheng Y, Li Q, Yuan C et al (2018) Thermodynamic analysis of high-pressure methane adsorption on coal-based activated carbon. Fuel 230:172–184. https://doi.org/10.1016/j.fuel.2018.05.056

    Article  Google Scholar 

  66. Ashraf MT, AlHammadi AA, El-Sherbeeny AM et al (2022) Synthesis of cellulose fibers/zeolite-a nanocomposite as an environmental adsorbent for organic and inorganic selenium ions; Characterization and advanced equilibrium studies. J Mol Liq 360:119573. https://doi.org/10.1016/j.molliq.2022.119573

    Article  Google Scholar 

  67. Girish CR, Murty VR (2016) Mass transfer studies on adsorption of phenol from wastewater using Lantana camara, forest waste. Int J Chem Eng 2016.https://doi.org/10.1155/2016/5809505

  68. Alaqarbeh M (2021) Adsorption phenomena: definition, mechanisms, and adsorption types: short review. RHAZES Green Appl Chem 13:43–51

    Google Scholar 

  69. Patel H (2020) Batch and continuous fixed bed adsorption of heavy metals removal using activated charcoal from neem ( Azadirachta indica ) leaf powder. Sci Rep 10:16895. https://doi.org/10.1038/s41598-020-72583-6

    Article  Google Scholar 

  70. Mariana M, Abdul AK, Mistar EM et al (2021) Recent advances in activated carbon modification techniques for enhanced heavy metal adsorption. J Water Process Eng 43:102221. https://doi.org/10.1016/j.jwpe.2021.102221

    Article  Google Scholar 

  71. Crini G, Lichtfouse E, Wilson LD, Morin-Crini N (2019) Conventional and non-conventional adsorbents for wastewater treatment. Environ Chem Lett 17:195–213. https://doi.org/10.1007/s10311-018-0786-8

    Article  Google Scholar 

  72. Liu B, Kim KH, Kumar V, Kim S (2020) A review of functional sorbents for adsorptive removal of arsenic ions in aqueous systems. J Hazard Mater 388:121815. https://doi.org/10.1016/j.jhazmat.2019.121815

    Article  Google Scholar 

  73. Tsade H, Murthy HCA, Muniswamy D (2020) Bio-sorbents from agricultural wastes for eradication of heavy metals: a review. J Mater Environ Sci 11:1719–1735

    Google Scholar 

  74. Devanna N, Begum BA, Chari MA (2019) Low-cost adsorbents procedure by means of heavy metal elimination from wastewater. Preprints. https://doi.org/10.20944/preprints201902.0013.v1

  75. Awad AM, Shaikh SMR, Jalab R et al (2019) Adsorption of organic pollutants by natural and modified clays: a comprehensive review. Sep Purif Technol 228:115719. https://doi.org/10.1016/j.seppur.2019.115719

    Article  Google Scholar 

  76. Dicko M, Guilmont M, Lamari F (2018) Adsorption and biomass: current interconnections and future challenges. Curr Sustain Energy Rep 5:247–256. https://doi.org/10.1007/s40518-018-0116-6

    Article  Google Scholar 

  77. Semlali Aouragh Hassani F, Ouarhim W, Bensalah MO et al (2019) Mechanical properties prediction of polypropylene/short coir fibers composites using a self-consistent approach. Polym Compos 40:1919–1929. https://doi.org/10.1002/pc.24967

    Article  Google Scholar 

  78. Essabir H, Achaby ME, Hilali EM et al (2015) Morphological, structural, thermal and tensile properties of high density polyethylene composites reinforced with treated argan nut shell particles. J Bionic Eng 12:129–141. https://doi.org/10.1016/S1672-6529(14)60107-4

    Article  Google Scholar 

  79. Adekomaya O, Adama K (2018) A review on application of natural fibre in structural reinforcement: challenges of properties adaptation. J Appl Sci Environ Manag 22:749. https://doi.org/10.4314/jasem.v22i5.27

    Article  Google Scholar 

  80. Isikgor H, Remzi Becer C (2010) Lignocellulosic biomass: a sustainable platform for production of bio-based chemicals and polymers. Polym Chem 1:13. https://doi.org/10.1039/c000660m

    Article  Google Scholar 

  81. Rangabhashiyam S, Balasubramanian P (2019) The potential of lignocellulosic biomass precursors for biochar production: performance, mechanism and wastewater application—a review. Ind Crops Prod 128:405–423. https://doi.org/10.1016/j.indcrop.2018.11.041

    Article  Google Scholar 

  82. Silveira-Junior EG, Perez VH, Justo OR et al (2021) Valorization of guava (Psidium guajava L.) seeds for levoglucosan production by fast pyrolysis. Cellulose 28:71–79. https://doi.org/10.1007/s10570-020-03506-x

    Article  Google Scholar 

  83. Baruah J, Nath BK, Sharma R et al (2018) Recent trends in the pretreatment of lignocellulosic biomass for value-added products. Front Energy Res 6.https://doi.org/10.3389/fenrg.2018.00141

  84. Mansor AM, Lim JS, Ani FN et al (2019) Characteristics of cellulose, hemicellulose and lignin of MD2 pineapple biomass. Chem Eng Trans 72:79–84. https://doi.org/10.3303/CET1972014

    Article  Google Scholar 

  85. Zhang L, Dou X, Yang Z et al (2021) Advance in hydrothermal bio-oil preparation from lignocellulose: effect of raw materials and their tissue structures. Biomass 1:74–93. https://doi.org/10.3390/biomass1020006

  86. Bai YY, Xiao LP, Shi ZJ, Sun RC (2013) Structural variation of bamboo lignin before and after ethanol organosolv pretreatment. Int J Mol Sci 14:21394–21413. https://doi.org/10.3390/ijms141121394

    Article  Google Scholar 

  87. Muktham R, Bhargava SK, Bankupalli S, Ball AS (2016) A review on 1st and 2nd generation bioethanol production-recent progress. J Sustain Bioenergy Syst 06:72–92. https://doi.org/10.4236/jsbs.2016.63008

    Article  Google Scholar 

  88. Komuraiah A, Kumar NS, Prasad BD (2014) Chemical composition of natural fibers and its influence on their mechanical properties. Mech Compos Mater 50:359–376. https://doi.org/10.1007/s11029-014-9422-2

    Article  Google Scholar 

  89. Pirayesh H, Khazaeian A, Tabarsa T (2012) The potential for using walnut (Juglans regia L.) shell as a raw material for wood-based particleboard manufacturing. Compos Part B Eng 43:3276–3280. https://doi.org/10.1016/j.compositesb.2012.02.016

    Article  Google Scholar 

  90. Li X, Liu Y, Hao J, Wang W (2018) Study of almond shell characteristics. Materials (Basel) 11.https://doi.org/10.3390/ma11091782

  91. Mokhena TC, John MJ (2020) Cellulose nanomaterials: new generation materials for solving global issues. Springer, Dordrecht

    Google Scholar 

  92. Sanjay MR, Arpitha GR, Naik LL et al (2016) Applications of natural fibers and its composites: an overview. Nat Resour 07:108–114. https://doi.org/10.4236/nr.2016.73011

    Article  Google Scholar 

  93. Candido ICM, Pires ICB, de Oliveira HP (2021) Natural and synthetic fiber-based adsorbents for water remediation. Clean Soil Air Water 49:1–11. https://doi.org/10.1002/clen.202000189

    Article  Google Scholar 

  94. Saman N, Johari K, Song ST et al (2017) High removal efficacy of Hg(II) and MeHg(II) ions from aqueous solution by organoalkoxysilane-grafted lignocellulosic waste biomass. Chemosphere 171:19–30. https://doi.org/10.1016/j.chemosphere.2016.12.049

    Article  Google Scholar 

  95. Kartina S, Karim A, Lim SF et al (2016) Banana fibers as sorbent for removal of acid green dye from water. J Chem 9648312. https://doi.org/10.1155/2016/9648312

  96. Pavan FA, Camacho ES, Lima EC et al (2014) Formosa papaya seed powder (FPSP): preparation, characterization and application as an alternative adsorbent for the removal of crystal violet from aqueous phase. J Environ Chem Eng 2:230–238. https://doi.org/10.1016/j.jece.2013.12.017

    Article  Google Scholar 

  97. Idan IJ (2017) Adsorption of anionic dye using cationic surfactant-modified kenaf core fibers. OALib 04:1–18. https://doi.org/10.4236/oalib.1103747

    Article  Google Scholar 

  98. Lee BG, Rowell RM (2004) Removal of heavy metal ions from aqueous solutions using lignocellulosic fibers. J Nat Fibers 1:97–108. https://doi.org/10.1300/J395v01n01_07

    Article  Google Scholar 

  99. Asadi F, Shariatmadari H, Mirghaffari N (2008) Modification of rice hull and sawdust sorptive characteristics for remove heavy metals from synthetic solutions and wastewater. J Hazard Mater 154:451–458. https://doi.org/10.1016/j.jhazmat.2007.10.046

    Article  Google Scholar 

  100. Lei M, Yang L, Shen Y et al (2021) Efficient adsorption of anionic dyes by ammoniated waste polyacrylonitrile fiber: mechanism and practicability. ACS Omega 6:19506–19516. https://doi.org/10.1021/acsomega.1c01780

    Article  Google Scholar 

  101. Yue X, Huang J, Jiang F et al (2019) Synthesis and characterization of cellulose-based adsorbent for removal of anionic and cationic dyes. J Eng Fiber Fabr 14.https://doi.org/10.1177/1558925019828194

  102. Akter M, Bhattacharjee M, Dhar AK et al (2021) Cellulose-based hydrogels for wastewater treatment: a concise review. Gels 7:1–28. https://doi.org/10.3390/gels7010030

    Article  Google Scholar 

  103. Elumalai, S, Agarwal, B, Runge, TM, Sangwan, RS (2018). Advances in transformation of lignocellulosic biomass to carbohydrate-derived fuel precursors. In: Kumar, S, Sani, R (eds) Biorefining of biomass to biofuels. Biofuel and Biorefinery Technologies, vol 4. Springer, Cham. https://doi.org/10.1007/978-3-319-67678-4_4

  104. Hon DNS (1994) Cellulose: a random walk along its historical path. Cellulose 1:1–25. https://doi.org/10.1007/BF00818796

    Article  Google Scholar 

  105. Okolie JA, Nanda S, Dalai AK, Kozinski JA (2021) Chemistry and specialty industrial applications of lignocellulosic biomass. Waste Biomass Valorization 12:2145–2169. https://doi.org/10.1007/s12649-020-01123-0

    Article  Google Scholar 

  106. Cichosz S, Masek A (2020) IR study on cellulose with the varied moisture contents: insight into the supramolecular structure. Materials (Basel) 13:1–22. https://doi.org/10.3390/ma13204573

    Article  Google Scholar 

  107. O’Dell WB, Baker DC, McLain SE (2012) Structural evidence for inter-residue hydrogen bonding observed for cellobiose in aqueous solution. PLoS ONE 7:25–27. https://doi.org/10.1371/journal.pone.0045311

    Article  Google Scholar 

  108. Zoghlami A, Paës G (2019) Lignocellulosic biomass: understanding recalcitrance and predicting hydrolysis. Front Chem 7.https://doi.org/10.3389/fchem.2019.00874

  109. Nasir M, Hashim R, Sulaiman O, Asim M (2017) Nanocellulose: preparation methods and applications. In: Jawaid M, Boufi S, Abdul Khalil HPS (eds) Cellulose-reinforced nanofibre composites: production, properties and applications. Elsevier Ltd, pp 261–276

  110. Rongpipi S, Ye D, Gomez ED, Gomez EW (2019) Progress and opportunities in the characterization of cellulose – an important regulator of cell wall growth and mechanics. Front Plant Sci 9:1–28. https://doi.org/10.3389/fpls.2018.01894

    Article  Google Scholar 

  111. Mittal A, Katahira R, Himmel ME, Johnson DK (2011) Effects of alkaline or liquid-ammonia treatment on crystalline cellulose: changes in crystalline structure and effects on enzymatic digestibility. Biotechnol Biofuels 4:1–16. https://doi.org/10.1186/1754-6834-4-41

    Article  Google Scholar 

  112. Tian SQ, Zhao RY, Chen ZC (2018) Review of the pretreatment and bioconversion of lignocellulosic biomass from wheat straw materials. Renew Sustain Energy Rev 91:483–489. https://doi.org/10.1016/j.rser.2018.03.113

    Article  Google Scholar 

  113. Tu WC, Hallett JP (2019) Recent advances in the pretreatment of lignocellulosic biomass. Curr Opin Green Sustain Chem 20:11–17. https://doi.org/10.1016/j.cogsc.2019.07.004

    Article  Google Scholar 

  114. Chakhtouna H, Benzeid H, Zari N, Qaiss A, Bouhfid R, Hybrid materials from cellulose nanocrystals for wastewater treatment, In: Rodrigue D, Qaiss A, Bouhfid R (eds) Cellulose Nanocrystal/Nanoparticles Hybrid Nanocomposites. Woodhead Publishing. https://doi.org/10.1016/B978-0-12-822906-4.00001-3

  115. Mishra RK, Sabu A, Tiwari SK (2018) Materials chemistry and the futurist eco-friendly applications of nanocellulose: status and prospect. J Saudi Chem Soc 22:949–978. https://doi.org/10.1016/j.jscs.2018.02.005

    Article  Google Scholar 

  116. Huang YB, Fu Y (2013) Hydrolysis of cellulose to glucose by solid acid catalysts. Green Chem 15:1095–1111. https://doi.org/10.1039/c3gc40136g

    Article  Google Scholar 

  117. Chau M, Sriskandha SE., Thérien-Aubin H, Kumacheva E (2015) Supramolecular nanofibrillar polymer hydrogels. In: Seiffert S (eds) Supramolecular polymer networks and gels. Advances in Polymer Science, vol 268. Springer, Cham. https://doi.org/10.1007/978-3-319-15404-6_5

  118. Ullah MW, Manan S, Ul-Islam M et al (2021) Introduction to nanocellulose. In: Nanocellulose: synthesis, structure, properties and applications. pp 1–50

  119. Trache D, Tarchoun AF, Derradji M et al (2020) Nanocellulose: from fundamentals to advanced applications. Front Chem 8.https://doi.org/10.3389/fchem.2020.00392

  120. Mateo S, Peinado S, Morillas-Gutiérrez F et al (2021) Nanocellulose from agricultural wastes: products and applications—a review. Processes 9.https://doi.org/10.3390/pr9091594

  121. Moon RJ, Martini A, Nairn J et al (2011) Cellulose nanomaterials review: structure, properties and nanocomposites. Chem Soc Rev 40(7):3941–3994. https://doi.org/10.1039/C0CS00108B

  122. Jamshaid A, Hamid A, Muhammad N et al (2017) Cellulose-based materials for the removal of heavy metals from wastewater - an overview. ChemBioEng Rev 4:240–256. https://doi.org/10.1002/cben.201700002

    Article  Google Scholar 

  123. Rathod M, Haldar S, Basha S (2015) Nanocrystalline cellulose for removal of tetracycline hydrochloride from water via biosorption: equilibrium, kinetic and thermodynamic studies. Ecol Eng 84:240–249

    Article  Google Scholar 

  124. Santoso SP, Kurniawan A, Soetaredjo FE et al (2019) Eco-friendly cellulose–bentonite porous composite hydrogels for adsorptive removal of azo dye and soilless culture. Cellulose 26:3339–3358. https://doi.org/10.1007/s10570-019-02314-2

    Article  Google Scholar 

  125. Chong KY, Chia CH, Zakaria S et al (2015) CaCO3-decorated cellulose aerogel for removal of Congo Red from aqueous solution. Cellulose 22:2683–2691. https://doi.org/10.1007/s10570-015-0675-2

    Article  Google Scholar 

  126. Chen X, Liu L, Luo Z et al (2018) Facile preparation of a cellulose-based bioadsorbent modified by hPEI in heterogeneous system for high-efficiency removal of multiple types of dyes. React Funct Polym 125:77–83. https://doi.org/10.1016/j.reactfunctpolym.2018.02.009

    Article  Google Scholar 

  127. Yu Z, Hu C, Dichiara AB et al (2020) Cellulose nanofibril/carbon nanomaterial hybrid aerogels for adsorption removal of cationic and anionic organic dyes. Nanomaterials 10:1–20. https://doi.org/10.3390/nano10010169

    Article  Google Scholar 

  128. Wei X, Huang T, Nie J et al (2018) Bio-inspired functionalization of microcrystalline cellulose aerogel with high adsorption performance toward dyes. Carbohydr Polym 198:546–555. https://doi.org/10.1016/j.carbpol.2018.06.112

    Article  Google Scholar 

  129. Sharma RK, Kumar R (2019) Functionalized cellulose with hydroxyethyl methacrylate and glycidyl methacrylate for metal ions and dye adsorption applications. Int J Biol Macromol 134:704–721. https://doi.org/10.1016/j.ijbiomac.2019.05.059

    Article  Google Scholar 

  130. Sun N, Wen X, Yan C (2018) Adsorption of mercury ions from wastewater aqueous solution by amide functionalized cellulose from sugarcane bagasse. Int J Biol Macromol 108:1199–1206. https://doi.org/10.1016/j.ijbiomac.2017.11.027

    Article  Google Scholar 

  131. Goswami R, Mishra A, Bhatt N, Naithani P (2020) Removal of chromium using nanocellulose based adsorbent. J Crit Rev 7:4148–4155

    Google Scholar 

  132. Kabuba J, Lukusa T (2021) Synthesis of Gelatin-Cellulose Nanocrystals Hydrogel Membrane For Removal of Cu (II) And Co (II) From Mining Processes Wastewater. Res Square. https://doi.org/10.21203/rs.3.rs-383692/v1

  133. Wang N, Ouyang X, Yang L, Omer AM (2017) Fabrication of a magnetic cellulose nanocrystal/metal − organic framework composite for removal of Pb(II) from water. ACS Sustain Chem Eng 5:10447–10458. https://doi.org/10.1021/acssuschemeng.7b02472

    Article  Google Scholar 

  134. Liang L, Zhang S, Goenaga GA et al (2020) Chemically cross-linked cellulose nanocrystal aerogels for effective removal of cation dye. Front Chem 8:1–9. https://doi.org/10.3389/fchem.2020.00570

    Article  Google Scholar 

  135. Thorat MN, Jagtap A, Dastager SG (2021) Fabrication of bacterial nanocellulose/polyethyleneimine (PEI-BC) based cationic adsorbent for efficient removal of anionic dyes. J Polym Res 28:1–11. https://doi.org/10.1007/s10965-021-02702-y

    Article  Google Scholar 

  136. Hu D, Jiang R, Wang N et al (2019) Adsorption of diclofenac sodium on bilayer amino-functionalized cellulose nanocrystals / chitosan composite. J Hazard Mater 369:483–493. https://doi.org/10.1016/j.jhazmat.2019.02.057

    Article  Google Scholar 

  137. Chen Y, Xiang Z, Wang D et al (2020) Effective photocatalytic degradation and physical adsorption of methylene blue using cellulose/GO/TiO2 hydrogels. RSC Adv 10:23936–23943. https://doi.org/10.1039/d0ra04509h

    Article  Google Scholar 

  138. Isikgor FH, Becer CR (2015) Lignocellulosic biomass: a sustainable platform for the production of bio-based chemicals and polymers. Polym Chem 6:4497–4559. https://doi.org/10.1039/c5py00263j

    Article  Google Scholar 

  139. Huang J-q, Qi R-t, Pang M-r et al (2017) Isolation, chemical characterization, and immunomodulatory activity of naturally acetylated hemicelluloses from bamboo shavings. J Zhejiang Univ Sci B 18:138–151. https://doi.org/10.1631/jzus.B1500274

    Article  Google Scholar 

  140. Sorieul M, Dickson A, Hill SJ, Pearson H (2016) Plant fibre: molecular structure and biomechanical properties, of a complex living material, influencing its deconstruction towards a biobased composite. Materials 9(8):618. https://doi.org/10.3390/ma9080618

  141. Hu L, Du M, Zhang J (2018) Hemicellulose-based hydrogels present status and application prospects: a brief review. Open J For 08:15–28. https://doi.org/10.4236/ojf.2018.81002

    Article  Google Scholar 

  142. Yao S, Nie S, Zhu H et al (2017) Extraction of hemicellulose by hot water to reduce adsorbable organic halogen formation in chlorine dioxide bleaching of bagasse pulp. Ind Crops Prod 96:178–185. https://doi.org/10.1016/j.indcrop.2016.11.046

    Article  Google Scholar 

  143. Bokhary A, Maleki E, Liao B (2018) Ultrafiltration for hemicelluloses recovery and purification thermomechanical pulp mill process waters. Desalin Water Treat 118:103–112. https://doi.org/10.5004/dwt.2018.22641

    Article  Google Scholar 

  144. Sun XF, Gan Z, Jing Z et al (2015) Adsorption of methylene blue on hemicellulose-based stimuli-responsive porous hydrogel. J Appl Polym Sci 132:19–22. https://doi.org/10.1002/app.41606

    Article  Google Scholar 

  145. Sun XF, Liu B, Jing Z, Wang H (2015) Preparation and adsorption property of xylan/poly(acrylic acid) magnetic nanocomposite hydrogel adsorbent. Carbohydr Polym 118:16–23. https://doi.org/10.1016/j.carbpol.2014.11.013

    Article  Google Scholar 

  146. Hu N, Chen D, Guan QQ et al (2020) Preparation of hemicellulose-based hydrogels from biomass refining industrial effluent for effective removal of methylene blue dye. Environ Technol 0:1–22. https://doi.org/10.1080/09593330.2020.1795930

    Article  Google Scholar 

  147. Huang Z, Liu S, Zhang B et al (2012) Equilibrium and kinetics studies on the absorption of Cu(II) from the aqueous phase using a β-cyclodextrin-based adsorbent. Carbohydr Polym 88:609–617. https://doi.org/10.1016/j.carbpol.2012.01.009

    Article  Google Scholar 

  148. Ayoub A, Venditti RA, Pawlak JJ et al (2013) Novel hemicellulose-chitosan biosorbent for water desalination and heavy metal removal. ACS Sustain Chem Eng 1:1102–1109. https://doi.org/10.1021/sc300166m

    Article  Google Scholar 

  149. Del Río JC, Rencoret J, Gutiérrez A et al (2020) Lignin monomers from beyond the canonical monolignol biosynthetic pathway: another brick in the wall. ACS Sustain Chem Eng 8:4997–5012. https://doi.org/10.1021/acssuschemeng.0c01109

    Article  Google Scholar 

  150. Becker J, Wittmann C (2019) A field of dreams: lignin valorization into chemicals, materials, fuels, and health-care products. Biotechnol Adv 37:107360. https://doi.org/10.1016/j.biotechadv.2019.02.016

    Article  Google Scholar 

  151. Abo BO, Gao M, Wang Y et al (2019) Lignocellulosic biomass for bioethanol: an overview on pretreatment, hydrolysis and fermentation processes. Rev Environ Health 34:57–68. https://doi.org/10.1515/reveh-2018-0054

    Article  Google Scholar 

  152. Khan A, Nair V, Colmenares JC, Gläser R (2018) Lignin-based composite materials for photocatalysis and photovoltaics. Top Curr Chem 376:1–31. https://doi.org/10.1007/s41061-018-0198-z

    Article  Google Scholar 

  153. Erfani Jazi M, Narayanan G, Aghabozorgi F et al (2019) Structure, chemistry and physicochemistry of lignin for material functionalization. SN Appl Sci 1:1–19. https://doi.org/10.1007/s42452-019-1126-8

    Article  Google Scholar 

  154. Li Y, Li F, Yang Y et al (2021) Research and application progress of lignin-based composite membrane. J Polym Eng 41:245–258. https://doi.org/10.1515/polyeng-2020-0268

    Article  Google Scholar 

  155. Naseer A, Hamid A, Ghauri M et al (2020) Lignin/alginate/hydroxyapatite composite beads for the efficient removal of copper and nickel ions from aqueous solutions. Desalin Water Treat 184:199–213. https://doi.org/10.5004/dwt.2020.25356

    Article  Google Scholar 

  156. Nair V, Panigrahy A, Vinu R (2014) Development of novel chitosan-lignin composites for adsorption of dyes and metal ions from wastewater. Chem Eng J 254:491–502. https://doi.org/10.1016/j.cej.2014.05.045

    Article  Google Scholar 

  157. Li F, Wang X, Yuan T, Sun R (2016) A lignosulfonate-modified graphene hydrogel with ultrahigh adsorption capacity for Pb(II) removal. J Mater Chem A 4:11888–11896. https://doi.org/10.1039/c6ta03779h

    Article  Google Scholar 

  158. Gassara F, Brar SK, Verma M, Tyagi RD (2013) Bisphenol A degradation in water by ligninolytic enzymes. Chemosphere 92:1356–1360. https://doi.org/10.1016/j.chemosphere.2013.02.071

    Article  Google Scholar 

  159. Srisasiwimon N, Chuangchote S, Laosiripojana N, Sagawa T (2018) TiO2/lignin-based carbon composited photocatalysts for enhanced photocatalytic conversion of lignin to high value chemicals. ACS Sustain Chem Eng 6:13968–13976. https://doi.org/10.1021/acssuschemeng.8b02353

    Article  Google Scholar 

  160. Khan A, Goepel M, Lisowski W et al (2021) Titania/chitosan–lignin nanocomposite as an efficient photocatalyst for the selective oxidation of benzyl alcohol under UV and visible light. RSC Adv 11:34996–35010. https://doi.org/10.1039/d1ra06500a

    Article  Google Scholar 

  161. Chakhtouna H, Zari N, Benzeid H et al (2021) Hybrid nanocomposites based on graphene and titanium dioxide for wastewater treatment. In: Qaiss A, Bouhfid R, Jawaid M (eds) Graphene and Nanoparticles Hybrid Nanocomposites. Composites Science and Technology. Springer, Singapore. https://doi.org/10.1007/978-981-33-4988-9_8

  162. Chakhtouna H, Mekhzoum MEM, Zari N, Benzeid H, Qaiss, A, Bouhfid R (2021) Biochar‐Supported materials for wastewater treatment. In: Ahamed R (eds) Applied Water Science, vol 1. Inamuddin. https://doi.org/10.1002/9781119725237.ch7

  163. Hagemann N, Spokas K, Schmidt HP et al (2018) Activated carbon, biochar and charcoal: linkages and synergies across pyrogenic carbon’s ABCs. Water (Switzerland) 10:1–19. https://doi.org/10.3390/w10020182

    Article  Google Scholar 

  164. Oni BA, Oziegbe O, Olawole OO (2019) Significance of biochar application to the environment and economy. Ann Agric Sci 64:222–236. https://doi.org/10.1016/j.aoas.2019.12.006

    Article  Google Scholar 

  165. Pusceddu E, Santilli SF, Fioravanti G et al (2019) Chemical-physical analysis and exfoliation of biochar-carbon matter: from agriculture soil improver to starting material for advanced nanotechnologies. Mater Res Express 6.https://doi.org/10.1088/2053-1591/ab4ba8

  166. Naeem MA, Khalid M, Arshad M, Ahmad R (2014) Yield and nutrient composition of biochar produced from different feedstocks at varying pyrolytic temperatures. Pak J Agric Sci 51:75–82

    Google Scholar 

  167. Tomczyk A, Sokołowska Z, Boguta P (2020) Biochar physicochemical properties: pyrolysis temperature and feedstock kind effects. Rev Environ Sci Biotechnol 19:191–215. https://doi.org/10.1007/s11157-020-09523-3

    Article  Google Scholar 

  168. Leng L, Xiong Q, Yang L et al (2021) An overview on engineering the surface area and porosity of biochar. Sci Total Environ 763:144204. https://doi.org/10.1016/j.scitotenv.2020.144204

    Article  Google Scholar 

  169. Gao Y, Yue Q, Gao B, Li A (2020) Insight into activated carbon from different kinds of chemical activating agents: a review. Sci Total Environ 746:141094. https://doi.org/10.1016/j.scitotenv.2020.141094

    Article  Google Scholar 

  170. Arslanoğlu H (2019) Direct and facile synthesis of highly porous low cost carbon from potassium-rich wine stone and their application for high-performance removal. J Hazard Mater 374:238–247. https://doi.org/10.1016/j.jhazmat.2019.04.042

    Article  Google Scholar 

  171. Fu Y, Shen Y, Zhang Z et al (2019) Activated bio-chars derived from rice husk via one- and two-step KOH-catalyzed pyrolysis for phenol adsorption. Sci Total Environ 646:1567–1577. https://doi.org/10.1016/j.scitotenv.2018.07.423

    Article  Google Scholar 

  172. Liew RK, Azwar E, Yek PNY et al (2018) Microwave pyrolysis with KOH/NaOH mixture activation: a new approach to produce micro-mesoporous activated carbon for textile dye adsorption. Bioresour Technol 266:1–10. https://doi.org/10.1016/j.biortech.2018.06.051

    Article  Google Scholar 

  173. El Bakouri H, Usero J, Morillo J, Ouassini A (2009) Adsorptive features of acid-treated olive stones for drin pesticides: equilibrium, kinetic and thermodynamic modeling studies. Bioresour Technol 100:4147–4155. https://doi.org/10.1016/j.biortech.2009.04.003

    Article  Google Scholar 

  174. Li L, Zou D, Xiao Z et al (2019) Biochar as a sorbent for emerging contaminants enables improvements in waste management and sustainable resource use. J Cleaner Production 210:1324–1342. https://doi.org/10.1016/j.jclepro.2018.11.087

  175. Tan X-F, Liu Y-G, Gu Y-L et al (2016) Biochar-based nano-composites for the decontamination of wastewater: a review. Bioresour Technol 212:318–333. https://doi.org/10.1016/j.biortech.2016.04.093

    Article  Google Scholar 

  176. Leichtweis J, Silvestri S, Carissimi E (2020) New composite of pecan nutshells biochar-ZnO for sequential removal of acid red 97 by adsorption and photocatalysis. Biomass Bioenergy 140:105648. https://doi.org/10.1016/j.biombioe.2020.105648

    Article  Google Scholar 

  177. Eltaweil AS, Ali Mohamed H, Abd El-Monaem EM, El-Subruiti GM (2020) Mesoporous magnetic biochar composite for enhanced adsorption of malachite green dye: characterization, adsorption kinetics, thermodynamics and isotherms. Adv Powder Technol 31:1253–1263. https://doi.org/10.1016/j.apt.2020.01.005

    Article  Google Scholar 

  178. Iqbal J, Shah NS, Sayed M et al (2021) Nano-zerovalent manganese/biochar composite for the adsorptive and oxidative removal of Congo-red dye from aqueous solutions. J Hazard Mater 403:123854. https://doi.org/10.1016/j.jhazmat.2020.123854

    Article  Google Scholar 

  179. Abdul G, Zhu X, Chen B (2017) Structural characteristics of biochar-graphene nanosheet composites and their adsorption performance for phthalic acid esters. Chem Eng J. https://doi.org/10.1016/j.cej.2017.02.074

    Article  Google Scholar 

Download references

Funding

This work was supported by the MAScIR Foundation.

Author information

Authors and Affiliations

Authors

Contributions

Hanane Chakhtouna:writing—original draft preparation, Hanane Benzeid: writing—review and editing, Nadia Zari: writing—review and editing, Abou el kacem Qaiss: supervision and review, Rachid Bouhfid: supervision and review.

Corresponding author

Correspondence to Rachid Bouhfid.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chakhtouna, H., Benzeid, H., Zari, N. et al. Recent advances in eco-friendly composites derived from lignocellulosic biomass for wastewater treatment. Biomass Conv. Bioref. (2022). https://doi.org/10.1007/s13399-022-03159-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13399-022-03159-9

Keywords

Navigation