Skip to main content
Log in

Plant-based synthesis of Ag-doped ZnO/MgO nanocomposites using Caccinia macranthera extract and evaluation of their photocatalytic activity, cytotoxicity, and potential application as a novel sensor for detection of Pb2+ ions

  • Original Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

For the first time, this study presented an eco-friendly procedure for the production of Ag-doped ZnO/MgO nanocomposites (NCPs) through a green chemistry method that involves the application of Caccinia macranthera extract, salts solution of zinc nitrate, Mg nitrate, and silver nitrate. The functionality of synthesized NCPs was investigated by FT-IR analysis. The results of morphological and structural examinations obtained from FESEM and XRD techniques displayed a spherical and crystallite product with an Fm3m group space. Next to evaluating the optical properties through PL and UV–Vis spectrophotometry, their ability to sensor heavy metal ions was also investigated as well. Considering their notable reply toward Pb2+ions, NCPs exerted a selective absorbance probe for the detection of Pb2+ ions throughout various metal ions such as Mg2+, Cr3+, Ce3+, Fe3+, Ni2+, Ag+, Zn2+, Ca2+, Pb2+, and Cu2+. The sensor exhibited high selectivity for the detection of Pb2+ ion in the range of 10–100 µM, while the limit of detection (LOD) was about LOD = 2.7 µM. We examined the cytotoxicity effect of synthesized NCPs on Huh-7 cancer cell lines by MTT assay, which resulted in concentration-dependent cytotoxicity with the IC50 value at a concentration of 62.5 ppm. Additionally, we assessed the photocatalytic activity of our product toward the dye degradation of methylene blue (MB) from aqueous solutions, leading to the degradation percentage of about 90% after 120 min. The outcomes suggested the potential of synthesized nanocomposites in acting as a catalyst for organic dye degradation of wastewater.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5 
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data availability

Not applicable.

References

  1. Kannan K, Radhika D, Sadasivuni KK, Reddy KR, Raghu AV (2020) Nanostructured metal oxides and its hybrids for photocatalytic and biomedical applications. Adv Coll Interface Sci 281:102178. https://doi.org/10.1016/j.cis.2020.102178

    Article  CAS  Google Scholar 

  2. Villaseñor MJ, Ríos Á (2018) Nanomaterials for water cleaning and desalination, energy production, disinfection, agriculture and green chemistry. Environ Chem Lett 16(1):11–34

    Article  Google Scholar 

  3. Balamurugan S, Balu A, Narasimman V, Selvan G, Usharani K, Srivind J, Suganya M, Manjula N, Rajashree C, Nagarethinam V (2018) Multi metal oxide CdO–Al2O3–NiO nanocomposite—synthesis, photocatalytic and magnetic properties. Mater Res Express 6(1):015022

    Article  Google Scholar 

  4. Balamurugan S, Balu AR, Narasimman V, Selvan G, Usharani K, Srivind J, Suganya M, Manjula N, Rajashree C, Nagarethinam VS (2019) Multi metal oxide CdO-Al2O3-NiO nanocomposite-synthesis, photocatalytic and magnetic properties. Mater Res Express 6 (1). doi:https://doi.org/10.1088/2053-1591/aae5af

  5. Panchal P, Paul DR, Sharma A, Hooda D, Yadav R, Meena P, Nehra S (2019) Phytoextract mediated ZnO/MgO nanocomposites for photocatalytic and antibacterial activities. J Photochem Photobiol, A 385:112049

    Article  CAS  Google Scholar 

  6. Revathi V, Karthik K (2018) Microwave assisted CdO–ZnO–MgO nanocomposite and its photocatalytic and antibacterial studies. J Mater Sci: Mater Electron 29(21):18519–18530

    CAS  Google Scholar 

  7. Nguyen DTC, Le HT, Nguyen TT, Nguyen TTT, Bach LG, Nguyen TD, Van Tran T (2021) Multifunctional ZnO nanoparticles bio-fabricated from Canna indica L flowers for seed germination, adsorption, and photocatalytic degradation of organic dyes. J Hazard Mater 420:126586

    Article  CAS  PubMed  Google Scholar 

  8. Suppuraj P, Thirumalai K, Parthiban S, Swaminathan M, Muthuvel I (2020) Novel Ag-TiO2/ZnFe2O4 Nanocomposites for Effective Photocatalytic, Electrocatalytic and Cytotoxicity Applications. J Nanosci Nanotechnol 20(2):709–718

    Article  CAS  PubMed  Google Scholar 

  9. Koe WS, Lee JW, Chong WC, Pang YL, Sim LC (2020) An overview of photocatalytic degradation: photocatalysts, mechanisms, and development of photocatalytic membrane. Environ Sci Pollut Res 27(3):2522–2565

    Article  CAS  Google Scholar 

  10. Li S, Wang C, Liu Y, Xue B, Jiang W, Liu Y, Mo L, Chen X (2021) Photocatalytic degradation of antibiotics using a novel Ag/Ag2S/Bi2MoO6 plasmonic pn heterojunction photocatalyst: Mineralization activity, degradation pathways and boosted charge separation mechanism. Chem Eng J 415:128991

    Article  CAS  Google Scholar 

  11. Torki F, Faghihian H (2018) Visible Light Degradation of Naproxen by Enhanced Photocatalytic Activity of NiO and NiS, Scavenger Study and Focus on Catalyst Support and Magnetization. Photochem Photobiol 94(3):491–502. https://doi.org/10.1111/php.12906

    Article  CAS  PubMed  Google Scholar 

  12. Ramesh M (2021) CuO as efficient photo catalyst for photocatalytic decoloration of wastewater containing Azo dyes. Water Pract Technol 16(4):1078–1090

    Article  Google Scholar 

  13. Azzam EM, Fathy NA, El-Khouly SM, Sami RM (2019) Enhancement the photocatalytic degradation of methylene blue dye using fabricated CNTs/TiO2/AgNPs/Surfactant nanocomposites. J Water Process Eng 28:311–321

    Article  Google Scholar 

  14. Nguyen LTT, Vo D-VN, Nguyen LTH, Duong ATT, Nguyen HQ, Chu NM, Nguyen DTC, Tran TV (2022) Synthesis, characterization, and application of ZnFe2O4@ZnO nanoparticles for photocatalytic degradation of Rhodamine B under visible-light illumination. Environ Technol Innov 25:102130. https://doi.org/10.1016/j.eti.2021.102130

    Article  CAS  Google Scholar 

  15. Vosoughifar A (2018) Photodegradation of dye in waste water using CaWO4/NiO nanocomposites; Co-precipitation preparation and characterization. J Mater Sci-Mater Electron 29(4):3194–3200. https://doi.org/10.1007/s10854-017-8254-y

    Article  CAS  Google Scholar 

  16. Najafian H, Manteghi F, Beshkar F, Salavati-Niasari M (2019) Enhanced photocatalytic activity of a novel NiO/Bi2O3/Bi3ClO4 nanocomposite for the degradation of azo dye pollutants under visible light irradiation. Sep Purif Technol 209:6–17. https://doi.org/10.1016/j.seppur.2018.07.010

    Article  CAS  Google Scholar 

  17. Lum P, Foo K, Zakaria N, Palaniandy P (2020) Ash based nanocomposites for photocatalytic degradation of textile dye pollutants: a review. Mater Chem Phys 241:122405

    Article  CAS  Google Scholar 

  18. Rong X, Qiu F, Zhang C, Fu L, Wang Y, Yang D (2015) Adsorption–photodegradation synergetic removal of methylene blue from aqueous solution by NiO/graphene oxide nanocomposite. Powder Technol 275:322–328

    Article  CAS  Google Scholar 

  19. Soofivand F, Salavati-Niasari M (2017) Step synthesis and photocatalytic activity of NiO/graphene nanocomposite under UV and visible light as an effective photocatalyst. J Photochem Photobiol, A 337:44–53

    Article  CAS  Google Scholar 

  20. Mohammed SA, Al Amouri L, Yousif E, Ali AA, Mabood F, Abbas HF, Alyaqoobi S (2018) Synthesis of NiO: V2O5 nanocomposite and its photocatalytic efficiency for methyl orange degradation. Heliyon 4(3):e00581

    Article  PubMed  PubMed Central  Google Scholar 

  21. Hussain MM, Rahman MM, Asiri AM (2017) Ultrasensitive and selective 4-aminophenol chemical sensor development based on nickel oxide nanoparticles decorated carbon nanotube nanocomposites for green environment. J Environ Sci 53:27–38

    Article  CAS  Google Scholar 

  22. Nakate UT, Patil P, Choudhury S, Kale S (2018) Microwave assisted synthesis of Co3O4 and NiO nanoplates and structural, optical, magnetic characterizations. Nano-Structures & Nano-Objects 14:66–72

    Article  CAS  Google Scholar 

  23. Gondal M, Saleh TA, Drmosh Q (2012) Synthesis of nickel oxide nanoparticles using pulsed laser ablation in liquids and their optical characterization. Appl Surf Sci 258(18):6982–6986

    Article  CAS  Google Scholar 

  24. Rahman MA, Radhakrishnan R, Gopalakrishnan R (2018) Structural, optical, magnetic and antibacterial properties of Nd doped NiO nanoparticles prepared by co-precipitation method. J Alloys Comp

  25. Silva RM, Raimundo RA, Fernandes WV, Torres SM, Silva VD, Grilo JP, Morales MA, Macedo DA (2018) Proteic sol-gel synthesis, structure and magnetic properties of Ni/NiO core-shell powders. Ceram Int 44(6):6152–6156

    Article  CAS  Google Scholar 

  26. Bouremana A, Guittoum A, Hemmous M, Martínez-Blanco D, Gorria P, Blanco J, Benrekaa N (2015) Microstructure, morphology and magnetic properties of Ni nanoparticles synthesized by hydrothermal method. Mater Chem Phys 160:435–439

    Article  CAS  Google Scholar 

  27. Shah M, Fawcett D, Sharma S, Tripathy SK, Poinern GEJ (2015) Green synthesis of metallic nanoparticles via biological entities. Materials 8(11):7278–7308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Phang Y-K, Aminuzzaman M, Akhtaruzzaman M, Muhammad G, Ogawa S, Watanabe A, Tey L-H (2021) Green Synthesis and Characterization of CuO Nanoparticles Derived from Papaya Peel Extract for the Photocatalytic Degradation of Palm Oil Mill Effluent (POME). Sustainability 13(2):796

    Article  CAS  Google Scholar 

  29. Pelissari FM, Andrade-Mahecha MM, do Amaral Sobral PJ, Menegalli FC (2017) Nanocomposites based on banana starch reinforced with cellulose nanofibers isolated from banana peels. Journal of colloid and interface science 505:154-167

  30. Elahi B, Mirzaee M, Darroudi M, Kazemi Oskuee R, Sadri K, Amiri MS (2019) Preparation of cerium oxide nanoparticles in Salvia Macrosiphon Boiss seeds extract and investigation of their photo-catalytic activities. Ceram Int 45(4):4790–4797. https://doi.org/10.1016/j.ceramint.2018.11.173

    Article  CAS  Google Scholar 

  31. Suganthi N, Thangavel S, Kannan K (2020) Hibiscus subdariffa leaf extract mediated 2-D fern-like ZnO/TiO2 hierarchical nanoleaf for photocatalytic degradation. FlatChem 24:100197. https://doi.org/10.1016/j.flatc.2020.100197

    Article  CAS  Google Scholar 

  32. Sathiya Priya A, Geetha D, Karthik K, Rajamoorthy M (2019) Investigations on the enhanced photocatalytic activity of (Ag, La) substituted nickel cobaltite spinels. Solid State Sci 98:105992. https://doi.org/10.1016/j.solidstatesciences.2019.105992

    Article  CAS  Google Scholar 

  33. Kannan K, Radhika D, Gnanasangeetha D, Lakkaboyana SK, Sadasivuni KK, Gurushankar K, Hanafiah MM (2021) Photocatalytic and antimicrobial properties of microwave synthesized mixed metal oxide nanocomposite. Inorg Chem Commun 125:108429. https://doi.org/10.1016/j.inoche.2020.108429

    Article  CAS  Google Scholar 

  34. Sabouri Z, Akbari A, Hosseini HA, Khatami M, Darroudi M (2020) Egg white-mediated green synthesis of NiO nanoparticles and study of their cytotoxicity and photocatalytic activity. Polyhedron 114351

  35. Saravanan R, Khan MM, Gupta VK, Mosquera E, Gracia F, Narayanan V, Stephen A (2015) ZnO/Ag/CdO nanocomposite for visible light-induced photocatalytic degradation of industrial textile effluents. J Colloid Interface Sci 452:126–133

    Article  CAS  PubMed  Google Scholar 

  36. Shahid M, Farrukh MA, Umar AA, Khaleeq-ur-Rahman M (2014) Solvent controlled synthesis of CaO-MgO nanocomposites and their application in the photodegradation of organic pollutants of industrial waste. Russ J Phys Chem A 88(5):836–844

    Article  CAS  Google Scholar 

  37. Sharma AK, Lee B-K (2020) Surfactant-aided sol-gel synthesis of TiO2–MgO nanocomposite and their photocatalytic azo dye degradation activity. J Compos Mater 54(12):1561–1570

    Article  CAS  Google Scholar 

  38. Saravanan R, Gupta V, Mosquera E, Gracia F (2014) Preparation and characterization of V2O5/ZnO nanocomposite system for photocatalytic application. J Mol Liq 198:409–412

    Article  CAS  Google Scholar 

  39. Klubnuan S, Amornpitoksuk P, Suwanboon S (2015) Structural, optical and photocatalytic properties of MgO/ZnO nanocomposites prepared by a hydrothermal method. Mater Sci Semicond Process 39:515–520

    Article  CAS  Google Scholar 

  40. Vignesh S, Suganthi S, Kalyana Sundar J, Raj V, Indra Devi PR (2019) Highly efficient visible light photocatalytic and antibacterial performance of PVP capped Cd:Ag: ZnO photocatalyst nanocomposites. Appl Surf Sci 479:914–929. https://doi.org/10.1016/j.apsusc.2019.02.064

    Article  CAS  Google Scholar 

  41. Syed A, Yadav LSR, Bahkali AH, Elgorban AM, Abdul Hakeem D, Ganganagappa N (2020) Effect of CeO2-ZnO Nanocomposite for Photocatalytic and Antibacterial Activities. Crystals 10(9):817

    Article  CAS  Google Scholar 

  42. Amani-Beni Z, Nezamzadeh-Ejhieh A (2018) NiO nanoparticles modified carbon paste electrode as a novel sulfasalazine sensor. Anal Chim Acta

  43. Aswini R, Murugesan S, Kannan K (2021) Bio-engineered TiO2 nanoparticles using Ledebouria revoluta extract: Larvicidal, histopathological, antibacterial and anticancer activity. Int J Environ Anal Chem 101(15):2926–2936. https://doi.org/10.1080/03067319.2020.1718668

    Article  CAS  Google Scholar 

  44. Rangayasami A, Kannan K, Joshi S, Subban M (2020) Bioengineered silver nanoparticles using Elytraria acaulis (Lf) Lindau leaf extract and its biological applications. Biocatal Agric Biotechnol 27:101690. https://doi.org/10.1016/j.bcab.2020.101690

    Article  Google Scholar 

  45. Rahdar A, Aliahmad M, Azizi Y, Keikha N, Moudi M, Keshavarzi F (2017) CuO-NiO Nano composites: Synthesis, Characterization, and Cytotoxicity evaluation. Nanomed Res J 2(2):78–86. https://doi.org/10.22034/nmrj.2017.56956.1057

    Article  CAS  Google Scholar 

  46. Goudarzi M, Alshamsi HA, Amiri M, Salavati-Niasari M (2021) ZnCo2O4/ZnO nanocomposite: Facile one-step green solid-state thermal decomposition synthesis using Dactylopius Coccus as capping agent, characterization and its 4T1 cells cytotoxicity investigation and anticancer activity. Arab J Chem 14(9):103316. https://doi.org/10.1016/j.arabjc.2021.103316

    Article  CAS  Google Scholar 

  47. Cao Y, Dhahad HA, El-Shorbagy MA, Alijani HQ, Zakeri M, Heydari A, Bahonar E, Slouf M, Khatami M, Naderifar M, Iravani S, Khatami S, Dehkordi FF (2021) Green synthesis of bimetallic ZnO–CuO nanoparticles and their cytotoxicity properties. Sci Rep 11(1):23479. https://doi.org/10.1038/s41598-021-02937-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Marsooli MA, Rahimi-Nasrabadi M, Fasihi-Ramandi M, Adib K, Eghbali-Arani M, Ahmadi F, Sohouli E, SobhaniNasab A, Mirhosseini SA, Gangali MR, Ehrlich H, Joseph Y (2020) Preparation of Fe3O4/SiO2/TiO2/CeVO4 Nanocomposites: Investigation of Photocatalytic Effects on Organic Pollutants, Bacterial Environments, and New Potential Therapeutic Candidate Against Cancer Cells. Frontiers in Pharmacology 11. https://doi.org/10.3389/fphar.2020.00192

  49. Othman SI, Adlii A, Allam AA, Alqhtani HA, AlHammadi AA, Abukhadra MR (2022) Characterization of MgO/CaO hybrid nanorods as an enhanced inorganic carrier of 5-Fluorouracil drug; loading, release, and cytotoxicity studies. J Inorg Organomet Polym Mater 1–10

  50. Jayapriya M, Premkumar K, Arulmozhi M, Karthikeyan K (2020) One-step biological synthesis of cauliflower-like Ag/MgO nanocomposite with antibacterial, anticancer, and catalytic activity towards anthropogenic pollutants. Res Chem Intermed 46(3):1771–1788

    Article  CAS  Google Scholar 

  51. Yazdi MET, Nourbakhsh F, Mashreghi M, Mousavi SH (2021) Ultrasound-based synthesis of ZnO· Ag 2 O 3 nanocomposite: characterization and evaluation of its antimicrobial and anticancer properties. Res Chem Intermed 47(7):1–12

    Google Scholar 

  52. Naskar A, Jana B, Kim H, Kwac L (2019) Effect of Ag2O on cell viability of ZnO nanoparticle synthesized by low temperature solution synthesis process. Biointerface Res Appl Chem 9:4011–4014

    Article  CAS  Google Scholar 

  53. Ahmad M, Zaidi SJA, Zoha S, Khan MS, Shahid M, Park TJ, Basit MA (2020) Pseudo-SILAR assisted unique synthesis of ZnO/Ag2O nanocomposites for improved photocatalytic and antibacterial performance without cytotoxic effect. Colloids Surf, A 603:125200. https://doi.org/10.1016/j.colsurfa.2020.125200

    Article  CAS  Google Scholar 

  54. Balaganesh A, Sengodan R, Ranjithkumar R, Chandarshekar B (2018) Synthesis and characterization of porous calcium oxide nanoparticles (CaO NPS). Int J Innov Technol Explor Eng 2:2278–3075

    Google Scholar 

  55. Anantharaman A, Ramalakshmi S, George M (2016) Green synthesis of calcium oxide nanoparticles and its applications. Int J Eng Res Appl 6(10):27–31

    Google Scholar 

  56. Karthik K, Dhanuskodi S, Gobinath C, Prabukumar S, Sivaramakrishnan S (2019) Ultrasonic-assisted CdO–MgO nanocomposite for multifunctional applications. Mater Technol 34(7):403–414

    Article  CAS  Google Scholar 

  57. Kannan K, Sivasubramanian D, Seetharaman P, Sivaperumal S (2020) Structural and biological properties with enhanced photocatalytic behaviour of CdO-MgO nanocomposite by microwave-assisted method. Optik 204:164221. https://doi.org/10.1016/j.ijleo.2020.164221

    Article  CAS  Google Scholar 

  58. Kannaiyan S, Easwaramoorthy KK, Andal V (2020) Synthesis, Characterisation, and Antimicrobial Efficacy of Acid Fuchsin Schiff Base-Modified Silver Nanoparticles. Nanotechnol Russ 15(11):828–836. https://doi.org/10.1134/S1995078020060208

    Article  CAS  Google Scholar 

  59. Alaizeri ZM, Alhadlaq HA, Aldawood S, Akhtar MJ, Amer MS, Ahamed M (2021) Facile Synthesis, Characterization, Photocatalytic Activity, and Cytotoxicity of Ag-Doped MgO Nanoparticles. Nanomaterials 11(11):2915

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Al-Ariki S, Yahya NAA, SaA Al-A’nsi, Jumali MHH, Jannah AN, Abd-Shukor R (2021) Synthesis and comparative study on the structural and optical properties of ZnO doped with Ni and Ag nanopowders fabricated by sol gel technique. Scientific Reports 11(1):11948. https://doi.org/10.1038/s41598-021-91439-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Sabouri Z, Rangrazi A, Amiri MS, Khatami M, Darroudi M (2021) Green synthesis of nickel oxide nanoparticles using Salvia hispanica L. (chia) seeds extract and studies of their photocatalytic activity and cytotoxicity effects. Bioprocess and Biosystems Engineering. doi:https://doi.org/10.1007/s00449-021-02613-8

  62. Sharma S, Dutta V, Singh P, Raizada P, Rahmani-Sani A, Hosseini-Bandegharaei A, Thakur VK (2019) Carbon quantum dot supported semiconductor photocatalysts for efficient degradation of organic pollutants in water: a review. J Clean Prod 228:755–769

    Article  CAS  Google Scholar 

  63. Sagadevan S, Imteyaz S, Murugan B, Lett JA, Sridewi N, Weldegebrieal GK, Fatimah I, Oh W-C (2022) A comprehensive review on green synthesis of titanium dioxide nanoparticles and their diverse biomedical applications. Green Process Synthesis 11(1):44–63. https://doi.org/10.1515/gps-2022-0005

    Article  CAS  Google Scholar 

  64. Muthuvel A, Jothibas M, Manoharan C (2020) Effect of chemically synthesis compared to biosynthesized ZnO-NPs using Solanum nigrum leaf extract and their photocatalytic, antibacterial and in-vitro antioxidant activity. J Environ Chem Eng 8(2):103705

    Article  CAS  Google Scholar 

  65. Jayabharathi J, Karunakaran C, Kalaiarasi V, Ramanathan P (2014) Nano ZnO, Cu-doped ZnO, and Ag-doped ZnO assisted generation of light from imidazole. J Photochem Photobiol, A 295:1–10

    Article  CAS  Google Scholar 

  66. Chen P, Wang Y, He S, Wang P, Xu Y, Zhang L (2020) Green Synthesis of Spherical Calcium Hydroxide Nanoparticles in the Presence of Tannic Acid. Adv Mater Sci Eng 2020:9501897. https://doi.org/10.1155/2020/9501897

    Article  CAS  Google Scholar 

  67. Keihani M, Esmaeili H, Rouhi P (2018) Biodiesel Production from Chicken Fat Using Nano-calcium Oxide Catalyst and Improving the Fuel Properties via Blending with Diesel. Physical Chemistry Research 6(3):521–529. https://doi.org/10.22036/pcr.2018.114565.1453

    Article  CAS  Google Scholar 

  68. Sabouri Z, Sabouri M, Amiri MS, Khatami M, Darroudi M (2020) Plant-based synthesis of cerium oxide nanoparticles using Rheum turkestanicum extract and evaluation of their cytotoxicity and photocatalytic properties. Materials Technology:1–14. doi:https://doi.org/10.1080/10667857.2020.1863573

  69. Sabouri Z, Akbari A, Hosseini HA, Hashemzadeh A, Darroudi M (2019) Eco-Friendly Biosynthesis of Nickel Oxide Nanoparticles Mediated by Okra Plant Extract and Investigation of Their Photocatalytic, Magnetic, Cytotoxicity, and Antibacterial Properties. J Clust Sci 1–10. doi:https://doi.org/10.1007/s10876-019-01584-x

Download references

Acknowledgements

This project was financially supported by the Vice-Chancellor for Research (Grant no. 4001167), Mashhad University of Medical Sciences. This study is the results of a research project and thesis presented by a postdoctoral student (Dr. Z. Sabouri).

Funding

This project was financially supported by the Vice-Chancellor for Research (Grant no. 4001167), Mashhad University of Medical Sciences.

Author information

Authors and Affiliations

Authors

Contributions

Zahra Sabouri was involved in investigation, methodology, software, writing the original draft, and formal analysis. Sajjad Sabouri was responsible for data curation, software, and writing, review, and editing. Samaneh Sadat Tabrizi Hafez Moghaddas, Asma Mostaphopure, and Seyed Mohammad Gheibi Hayate took part in data curation, and writing, reviewing, and editing. Majid Darroudi participated in supervision, project administration, validation, methodology, and writing, reviewing, and editing.

Corresponding author

Correspondence to Majid Darroudi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

No experiments are conducted on animals or humans.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sabouri, Z., Sabouri, S., Moghaddas, S.S.T.H. et al. Plant-based synthesis of Ag-doped ZnO/MgO nanocomposites using Caccinia macranthera extract and evaluation of their photocatalytic activity, cytotoxicity, and potential application as a novel sensor for detection of Pb2+ ions. Biomass Conv. Bioref. 14, 8293–8305 (2024). https://doi.org/10.1007/s13399-022-02907-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13399-022-02907-1

Keywords

Navigation