Skip to main content
Log in

The large-scale period of atmospheric trace metal deposition to urban landscape trees as a biomonitor

  • Original Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

Traffic emissions and industrial activities cause atmospheric contamination derived from fossil fuels. The potential uptake of air pollutants affects the ecosystem and decreases air quality. Trace metal accumulation on trees shows toxicity in their cells due to root uptake, pathways of leaf deposition, and foliar absorption over the years. Trees can indeed provide data for the deposition quantity for a long time. Thus, urban landscape trees can be effectively trackable as a biomonitor to assess regional atmospheric pollution by starting a new research area. This study’s aim was to perform Mn, Cr, Ni, Cu, Zn, Al, Cd, and Fe deposition to landscape trees within a region in Ankara by motor vehicles, residential areas, and small industries. Ailanthus altissima (Mill.) selected as native landscape tree species, an invader street tree, and overstrained species in urban areas. It was used as a biomonitor to determine the trends of trace metals and analyzed via tree rings the long-term atmospheric deposition between 1950 and 2020. The obtained results were determined as wood < inner bark < outer bark by years. The toxic metal accumulation was significantly correlated with emissions of sources as follows: Al (758.04 ppm) > Fe (275.47 ppm) > Mn (52.68 ppm) > Ni (38.09 ppm) > Cr (36.40 ppm) > Cu (32.34 ppm) > Zn (29.22 ppm) > Cd (0.50 ppm). The street tree rings of Ailanthus altissima (Mill.) can be used as retrospective biomonitoring for estimating metal contamination levels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article. Also, the datasets are available from the corresponding author on reasonable request.

References

  1. Goossens J, Jonckheere AC, Dupont LJ, Bullens D (2021) Air pollution and the airways: lessons from a century of human Urbanization. Atmosphere 12(7):898. https://doi.org/10.3390/atmos12070898

    Article  ADS  CAS  Google Scholar 

  2. Mifsud DV, Stüeken EE, Wilson RJ (2021) A preliminary study into the use of tree-ring and foliar geochemistry as bio-indicators for vehicular NOx pollution in Malta. Isot Environ Health Stud 57(3):301–315. https://doi.org/10.1080/10256016.2021.1902319

    Article  CAS  Google Scholar 

  3. Rehman A, Ma H, Ozturk I (2021) Do industrialization, energy importations, and economic progress influence carbon emission in Pakistan. Environ Sci Pollut Res 28(33):45840–45852. https://doi.org/10.1007/s11356-021-13916-4

    Article  CAS  Google Scholar 

  4. Hernández-Gordillo A, Ruiz-Correa S, Robledo-Valero V, Hernández-Rosales C, Arriaga S (2021) Recent advancements in low-cost portable sensors for urban and indoor air quality monitoring. Air Qual Atmos Health 14:1931–1951. https://doi.org/10.1007/s11869-021-01067-x

    Article  CAS  Google Scholar 

  5. Prajapati P, Varjani S, Singhania RR, Patel AK, Awasthi MK, Sindhu R, Zhang Z, Binod P, Awasthi SK, Chaturvedi P (2021) Critical review on technological advancements for effective waste management of municipal solid waste—updates and way forward. Environ Technol Innov 23:101749. https://doi.org/10.1016/j.eti.2021.101749

    Article  CAS  Google Scholar 

  6. Yilmaz D, Isinkaralar O (2021a) How can natural environment scoring tool (Nest) be adapted for urban parks? Kastamonu Univ J Eng Sci 7(2):127–139 https://dergipark.org.tr/tr/pub/kastamonujes/issue/66389/1013821

    Google Scholar 

  7. Yilmaz D, Isinkaralar O (2021b) Climate action plans under climate-resilient urban policies. Kastamonu Univ J Eng Sci 7(2):140–147 https://dergipark.org.tr/tr/pub/kastamonujes/issue/66389/1014599

    Google Scholar 

  8. Milićević T, Aničić Urošević M, Relić D, Jovanović G, Nikolić D, Vergel K, Popović A (2021) Environmental pollution influence to soil–plant–air system in organic vineyard: bioavailability, environmental, and health risk assessment. Environ Sci Pollut Res 28(3):3361–3374. https://doi.org/10.1007/s11356-020-10649-8

    Article  CAS  Google Scholar 

  9. Dytłow S, Górka-Kostrubiec B (2019) Effective and universal tool for evaluating heavy metals—passive dust samplers. Environ Pollut 247:188–194. https://doi.org/10.1016/j.envpol.2019.01.030

    Article  CAS  PubMed  Google Scholar 

  10. Cetin M, Sevik H, Turkyilmaz A, Isinkaralar K (2021) Using Abies’s needles as biomonitors of recent heavy metal accumulation. Kastamonu Univ J Eng Sci 7(1):1–6 https://dergipark.org.tr/en/pub/kastamonujes/issue/63105/892118

    Google Scholar 

  11. Popoola LT, Adebanjo SA, Adeoye BK (2018) Assessment of atmospheric particulate matter and heavy metals: a critical review. Int J Environ Sci Technol 15(5):935–948. https://doi.org/10.1007/s13762-017-1454-4

    Article  CAS  Google Scholar 

  12. Yadav IC, Devi NL, Singh VK, Li J, Zhang G (2019) Spatial distribution, source analysis, and health risk assessment of heavy metals contamination in house dust and surface soil from four major cities of Nepal. Chemosphere 218:1100–1113. https://doi.org/10.1016/j.chemosphere.2018.11.202

    Article  ADS  CAS  PubMed  Google Scholar 

  13. Rostami S, Kamani H, Shahsavani S, Hoseini M (2021) Environmental monitoring and ecological risk assessment of heavy metals in farmland soils. Human and Ecological Risk Assessment: An. Int J 27(2):392–404. https://doi.org/10.1080/10807039.2020.1719030

    Article  CAS  Google Scholar 

  14. Omidifar N, Nili-Ahmadabadi A, Nakhostin-Ansari A, Lankarani KB, Moghadami M, Mousavi SM, Hashemi AS, Gholami A, Shokripour M, Ebrahimi Z (2021) The modulatory potential of herbal antioxidants against oxidative stress and heavy metal pollution: plants against environmental oxidative stress. Environ Sci Pollut Res 28(44):61908–61918. https://doi.org/10.1007/s11356-021-16530-6

    Article  CAS  Google Scholar 

  15. Marzuoli R, Monga R, Finco A, Chiesa M, Gerosa G (2018) Increased nitrogen wet deposition triggers negative effects of ozone on the biomass production of Carpinus betulus L. young trees. Environ Exp Bot 152:128–136. https://doi.org/10.1016/j.envexpbot.2017.10.017

    Article  CAS  Google Scholar 

  16. Scharnweber T, Hevia A, Buras A, van der Maaten E, Wilmking M (2016) Common trends in elements? Within-and between-tree variations of wood-chemistry measured by X-ray fluorescence—a dendrochemical study. Sci Total Environ 566:1245–1253. https://doi.org/10.1016/j.scitotenv.2016.05.182

    Article  ADS  CAS  PubMed  Google Scholar 

  17. Piazzetta KD, Ramsdorf WA, Maranho LT (2019) Use of airplant Tillandsia recurvata L., Bromeliaceae, as biomonitor of urban air pollution. Aerobiologia 35(1):125–137. https://doi.org/10.1007/s10453-018-9545-3

    Article  Google Scholar 

  18. Kompiš M, Ballová ZK (2021) The influence of preferred habitat and daily range of the European hare on its contamination by heavy metals: a case study from the West Carpathians. Environ Sci Pollut Res 28(37):52093–52105. https://doi.org/10.1007/s11356-021-14363-x

    Article  CAS  Google Scholar 

  19. Pujari M, Kapoor D (2021) Heavy metals in the ecosystem: sources and their effects. In: Heavy metals in the environment. Elsevier, Amsterdam, pp 1–7. https://doi.org/10.1016/B978-0-12-821656-9.00001-8

    Chapter  Google Scholar 

  20. Budinger D, Barral S, Soo AK, Kurian MA (2021) The role of manganese dysregulation in neurological disease: emerging evidence. Lancet Neurol 20(11):956–968. https://doi.org/10.1016/S1474-4422(21)00238-6

    Article  CAS  PubMed  Google Scholar 

  21. International Agency for Research on Cancer (1994) IARC monographs on the evaluation of carcinogenic risk to humans: some industrial chemicals. In IARC monographs on the evaluation of carcinogenic risk to humans: some industrial chemicals (pp. 560-560).

  22. Ediagbonya TF, Omotade ET, Iranse OB (2021) Investigation of metals accumulation in soil dumpsites using proton-induced X-ray emission. Environ Geochem Health, 1-14. https://doi.org/10.1007/s10653-021-00901-6

  23. Kumpiene J, Lagerkvist A, Maurice C (2008) Stabilization of As, Cr, Cu, Pb and Zn in soil using amendments–a review. Waste Manag 28(1):215–225. https://doi.org/10.1016/j.wasman.2006.12.012

    Article  CAS  PubMed  Google Scholar 

  24. Meshram P, Abhilash PBD (2019) Advanced review on extraction of nickel from primary and secondary sources. Miner Process Extr Metall Rev. https://doi.org/10.1080/08827508.2018.1514300

  25. Shabbir Z, Sardar A, Shabbir A, Abbas G, Shamshad S, Khalid S, Natasha MG, Dumat C, Shahid M (2020) Copper uptake, essentiality, toxicity, detoxification and risk assessment in soil-plant environment. Chemosphere 259:127436. https://doi.org/10.1016/j.chemosphere.2020.127436

    Article  CAS  PubMed  Google Scholar 

  26. Isinkaralar K (2021) Changes in Cadmium (Cd) concentrations in some plants depending on traffic density. New Trends Issues Proc Adv Pure Appl Sci 14:63–70 https://www.un-pub.eu/ojs/index.php/paas/article/view/6797

    Google Scholar 

  27. Zhou T, Wang Z, Christie P, Wu L (2021) Cadmium and lead pollution characteristics of soils, vegetables and human hair around an open-cast lead-zinc mine. Bull Environ Contam Toxicol 107(6):1176–1183. https://doi.org/10.1007/s00128-021-03134-6

    Article  CAS  PubMed  Google Scholar 

  28. Grzywaczyk A, Smułek W, Smułek G, Ślachciński M, Kaczorek E (2021) Application of natural surfactants for improving the leaching of zinc and copper from different soils. Environ Technol Innov 24:101926. https://doi.org/10.1016/j.eti.2021.101926

    Article  CAS  Google Scholar 

  29. Kumar P, Sivaperumal P, Manigandan V, Rajaram R, Hussain M (2021) Assessment of potential human health risk due to heavy metal contamination in edible finfish and shellfish collected around Ennore coast, India. Environ Sci Pollut Res 28(7):8151–8167. https://doi.org/10.1007/s11356-020-10764-6

    Article  CAS  Google Scholar 

  30. Yousefi H, Lak E, Mohammadi MJ, Shahriyari HA (2021) Carcinogenic risk assessment among children and adult due to exposure to toxic air pollutants. Environ Sci Pollut Res 1-11. https://doi.org/10.1007/s11356-021-17300-0

  31. Habib HM, Ibrahim S, Zaim A, Ibrahim WH (2021) The role of iron in the pathogenesis of COVID-19 and possible treatment with lactoferrin and other iron chelators. Biomed Pharmacother 136:111228. https://doi.org/10.1016/j.biopha.2021.111228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Vashistha VK, Kumar A, Tevatia P, Das DK (2021) Synthesis, characterization, electrochemical and antimicrobial studies of iron (II) and nickel (II) macrocyclic complexes. Russ J Electrochem 57(4):348–356. https://doi.org/10.1134/S1023193521040091

    Article  Google Scholar 

  33. Ge X, Chen F, Saqlain L, Ma J, Khan ZI, Ahmad K, Malik IS, Ashfaq A, Sultana R, Munir M, Nadeem M, Awan MUF, Sohail M (2021) Evaluation of pasture allowance of manganese for ruminants. Environ Sci Pollut Res 28(40):56906–56914. https://doi.org/10.1007/s11356-021-14666-z

    Article  CAS  Google Scholar 

  34. Eränen JK, Nilsen J, Zverev VE, Kozlov MV (2009) Mountain birch under multiple stressors–heavy metal-resistant populations co-resistant to biotic stress but maladapted to abiotic stress. J Evol Biol 22(4):840–851

    Article  PubMed  Google Scholar 

  35. Perić A, Vukomanović Đurđević B (2020) Nasal polyp epithelial atypia and exposure to nickel and copper. Occup Med 70(1):72–74. https://doi.org/10.1093/occmed/kqz123

    Article  Google Scholar 

  36. Gemeda FT, Guta DD, Wakjira FS, Gebresenbet G (2021) Occurrence of heavy metal in water, soil, and plants in fields irrigated with industrial wastewater in Sabata town, Ethiopia. Environ Sci Pollut Res 28(10):12382–12396. https://doi.org/10.1007/s11356-020-10621-6

    Article  CAS  Google Scholar 

  37. Brewer GJ (2012) Copper toxicity in Alzheimer’s disease: cognitive loss from ingestion of inorganic copper. J Trace Elem Med Biol 26(2-3):89–92. https://doi.org/10.1016/j.jtemb.2012.04.019

    Article  CAS  PubMed  Google Scholar 

  38. Dutta S, Gorain B, Choudhury H, Roychoudhury S, Sengupta P (2021) Environmental and occupational exposure of metals and female reproductive health. Environ Sci Pollut Res 1-26. https://doi.org/10.1007/s11356-021-16581-9

  39. Pfalzer AC, Bowman AB (2017) Relationships between essential manganese biology and manganese toxicity in neurological disease. Curr Environ Health Rep 4(2):223–228. https://doi.org/10.1007/s40572-017-0136-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Tepanosyan G, Sahakyan L, Belyaeva O, Asmaryan S, Saghatelyan A (2018) Continuous impact of mining activities on soil heavy metals levels and human health. Sci Total Environ 639:900–909. https://doi.org/10.1016/j.scitotenv.2018.05.211

    Article  ADS  CAS  PubMed  Google Scholar 

  41. Alengebawy A, Abdelkhalek ST, Qureshi SR, Wang MQ (2021) Heavy metals and pesticides toxicity in agricultural soil and plants: ecological risks and human health implications. Toxics 9(3):42. https://doi.org/10.3390/toxics9030042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Fu Z, Xi S (2020) The effects of heavy metals on human metabolism. Toxicol Mech Methods 30(3):167–176. https://doi.org/10.1080/15376516.2019.1701594

    Article  CAS  PubMed  Google Scholar 

  43. Paithankar JG, Saini S, Dwivedi S, Sharma A, Chowdhuri DK (2021) Heavy metal associated health hazards: an interplay of oxidative stress and signal transduction. Chemosphere 262:128350. https://doi.org/10.1016/j.chemosphere.2020.128350

    Article  CAS  PubMed  Google Scholar 

  44. Soomro MH, Baiz N, Huel G, Yazbeck C, Botton J, Heude B, Bornehag CG, Maesano IA, EDEN mother-child cohort study group (2019) Exposure to heavy metals during pregnancy related to gestational diabetes mellitus in diabetes-free mothers. Sci Total Environ 656:870–876. https://doi.org/10.1016/j.scitotenv.2018.11.422

    Article  ADS  CAS  PubMed  Google Scholar 

  45. Wang R, Zhang L, Chen Y, Zhang S, Zhuang T, Wang L, Xu M, Zhang N, Liu S (2020) Elevated non-essential metals and the disordered metabolism of essential metals are associated to abnormal pregnancy with spontaneous abortion. Environ Int 144:106061. https://doi.org/10.1016/j.envint.2020.106061

    Article  CAS  PubMed  Google Scholar 

  46. Nascimento S, Brucker N, Göethel G, Sauer E, Peruzzi C, Gauer B, Tureta E, Flesch I, Cestonaro L, Pierre TS, Gioda A, Garcia SC (2021) Children environmentally exposed to agrochemicals in rural areas present changes in oxidative status and DNA damage. Biol Trace Elem Res, 1-8. https://doi.org/10.1007/s12011-021-02950-5

  47. Fallah A, Mohammad-Hasani A, Colagar AH (2018) Zinc is an essential element for male fertility: a review of Zn roles in men’s health, germination, sperm quality, and fertilization. J Reprod infertil 19(2):69

    PubMed  PubMed Central  Google Scholar 

  48. Sensuła B, Fagel N, Michczyński A (2021) Radiocarbon, trace elements and Pb isotope composition of pine needles from a highly industrialized region in southern Poland. Radiocarbon 63(2):713–726. https://doi.org/10.1017/RDC.2020.132

    Article  CAS  Google Scholar 

  49. Turkyilmaz A, Sevik H, Isinkaralar K, Cetin M (2019) Use of tree rings as a bioindicator to observe atmospheric heavy metal deposition. Environ Sci Pollut Res 26(5):5122–5130. https://doi.org/10.1007/s11356-018-3962-2

    Article  CAS  Google Scholar 

  50. Kang H, Liu X, Guo J, Wang B, Xu G, Wu G, Kang S, Huang J (2019) Characterization of mercury concentration from soils to needle and tree rings of Schrenk spruce (Picea schrenkiana) of the middle Tianshan Mountains, northwestern China. Ecol Indic 104:24–31. https://doi.org/10.1016/j.ecolind.2019.04.066

    Article  CAS  Google Scholar 

  51. Jing-yu P, Shuai Z, Yingyue H, Bate B, Han K, Yunmin C (2021) Soil heavy metal pollution of industrial legacies in China and health risk assessment. Sci Total Environ 816:151632. https://doi.org/10.1016/j.scitotenv.2021.151632

    Article  CAS  Google Scholar 

  52. Kousehlar M, Widom E (2019) Sources of metals in atmospheric particulate matter in Tehran, Iran: tree bark biomonitoring. Appl Geochem 104:71–82. https://doi.org/10.1016/j.apgeochem.2019.03.018

    Article  ADS  CAS  Google Scholar 

  53. Chaparro MA, Chaparro MA, Castañeda-Miranda AG, Marié DC, Gargiulo JD, Lavornia JM, Natal M, Böhnel HN (2020) Fine air pollution particles trapped by street tree barks: In situ magnetic biomonitoring. Environ Pollut 266:115229. https://doi.org/10.1016/j.envpol.2020.115229

    Article  CAS  PubMed  Google Scholar 

  54. Isinkaralar K (2022) Atmospheric deposition of Pb and Cd in the Cedrus atlantica for environmental biomonitoring. Landsc Ecol Eng. https://doi.org/10.1007/s11355-022-00503-z

  55. Hatami-Manesh M, Mortazavi S, Solgi E, Mohtadi A (2021) Assessing the uptake and accumulation of heavy metals and particulate matter from ambient air by some tree species in Isfahan Metropolis, Iran. Environ Sci Pollut Res 28(30):41451–41463. https://doi.org/10.1007/s11356-021-13524-2

    Article  CAS  Google Scholar 

  56. Savas DS, Sevik H, Isinkaralar K, Turkyilmaz A, Cetin M (2021) The potential of using Cedrus atlantica as a biomonitor in the concentrations of Cr and Mn. Environ Sci Pollut Res 28(39):55446–55453. https://doi.org/10.1007/s11356-021-14826-1

    Article  CAS  Google Scholar 

  57. Cetin M, Sevik H, Cobanoglu O (2020) Ca, Cu, and Li in washed and unwashed specimens of needles, bark, and branches of the blue spruce (Picea pungens) in the city of Ankara. Environ Sci Pollut Res 27(17):21816–21825. https://doi.org/10.1007/s11356-020-08687-3

    Article  CAS  Google Scholar 

  58. Isinkaralar K, Erdem R (2021a) Landscape plants as biomonitors for magnesium concentration in some species. Int J Progress Sci Technol 29(2):468–473

    Google Scholar 

  59. Isinkaralar K, Erdem R (2021b) Changes of calcium content on some trees in Kocaeli. Kastamonu Univ J Eng Sci 7(2):148–154 https://dergipark.org.tr/en/pub/kastamonujes/issue/66389/1015387

    Google Scholar 

  60. Newsome L, Falagán C (2021) The microbiology of metal mine waste: bioremediation applications and implications for planetary health. GeoHealth 5(10):e2020GH000380. https://doi.org/10.1029/2020GH000380

    Article  PubMed  PubMed Central  Google Scholar 

  61. Ștefănuț S, Öllerer K, Ion MC, Florescu LI, Constantin M, Banciu C et al (2021) Country-scale complementary passive and active biomonitoring of airborne trace elements for environmental risk assessment. Ecol Indic 126:107357. https://doi.org/10.1016/j.ecolind.2021.107357

    Article  CAS  Google Scholar 

  62. Kour D, Kaur T, Devi R, Yadav A, Singh M, Joshi D et al (2021) Beneficial microbiomes for bioremediation of diverse contaminated environments for environmental sustainability: present status and future challenges. Environ Sci Pollut Res 28(20):24917–24939. https://doi.org/10.1007/s11356-021-13252-7

    Article  CAS  Google Scholar 

  63. Ullah R, Khan N (2021) Xanthium strumarium L. an alien invasive species in Khyber Pakhtunkhwa (Pakistan): a tool for biomonitoring and environmental risk assessment of heavy metal pollutants. Arab J Sci Eng:1–13. https://doi.org/10.1007/s13369-021-05839-6

  64. Aricak B, Cetin M, Erdem R, Sevik H, Cometen H (2020) The usability of Scotch pine (Pinus sylvestris) as a biomonitor for traffic-originated heavy metal concentrations in Turkey. Pol J Environ Stud 29(2):1–7. https://doi.org/10.15244/pjoes/109244

    Article  CAS  Google Scholar 

  65. Molnár VÉ, Simon E, Tóthmérész B, Ninsawat S, Szabó S (2020) Air pollution induced vegetation stress–the air pollution tolerance index as a quick tool for city health evaluation. Ecol Indic 113:106234. https://doi.org/10.1016/j.ecolind.2020.106234

    Article  CAS  Google Scholar 

  66. Isinkaralar K, Erdem R (2022) The effect of atmospheric deposition on potassium accumulation in several tree species as a biomonitor. Environ Res Technol 5(1):94–100. https://doi.org/10.35208/ert.1026602

    Article  Google Scholar 

  67. Cowden P, Aherne J (2019) Assessment of atmospheric metal deposition by moss biomonitoring in a region under the influence of a long standing active aluminium smelter. Atmos Environ 201:84–91. https://doi.org/10.1016/j.atmosenv.2018.12.022

    Article  ADS  CAS  Google Scholar 

  68. Świsłowski P, Kosior G, Rajfur M (2021) The influence of preparation methodology on the concentrations of heavy metals in Pleurozium schreberi moss samples prior to use in active biomonitoring studies. Environ Sci Pollut Res 28(8):10068–10076. https://doi.org/10.1007/s11356-020-11484-7

    Article  CAS  Google Scholar 

  69. Ballikaya P, Marshall J, Cherubini P (2022) Can tree-ring chemistry be used to monitor atmospheric nanoparticle contamination over time? Atmos Environ 268:118781. https://doi.org/10.1016/j.atmosenv.2021.118781

    Article  CAS  Google Scholar 

  70. Sevik H, Cetin M, Ozel HB, Pinar B (2019) Determining toxic metal concentration changes in landscaping plants based on some factors. Air Qual Atmos Health 12(8):983–991. https://doi.org/10.1007/s11869-019-00717-5

    Article  CAS  Google Scholar 

  71. Świsłowski P, Kříž J, Rajfur M (2020) The use of bark in biomonitoring heavy metal pollution of forest areas on the example of selected areas in Poland. Ecol Chem Eng 27(2):195–210. https://doi.org/10.2478/eces-2020-0013

    Article  CAS  Google Scholar 

  72. Keshavarzi A, Kumar V, Ertunç G, Brevik EC (2021) Ecological risk assessment and source apportionment of heavy metals contamination: an appraisal based on the Tellus soil survey. Environ Geochem Health 43(5):2121–2142. https://doi.org/10.1007/s10653-020-00787-w

    Article  CAS  PubMed  Google Scholar 

  73. USEPA (1996) United States Environmental Protection Agency SW-846 test method 3052: microwave assisted acid digestion of siliceous and organically based matrices. https://www.epa.gov/hw-sw846/sw-846-test-method-3052-microwave-assisted-acid-digestion-siliceous-and-organically-based. Accessed 11 December 2021

  74. Ammar F (2019) Heavy metals in bark and leaves of trees as a biomonitor for air pollution in Mosul city. Mesopotamia J Agric 45(3):177–192. https://doi.org/10.33899/magrj.2019.161348

    Article  Google Scholar 

  75. Sevik H (2021) The variation of chrome consantration in some landscape plants due to species, organ and traffic density. Turkish Journal of Agriculture-Food. Sci Technol 9(3):595–600. https://doi.org/10.24925/turjaf.v9i3.595-600.4113

    Article  Google Scholar 

  76. Alaqouri HAA, Ozer Genc C, Aricak B, Kuzmina N, Menshikov S, Cetin M (2020) The possibility of using Scots pine (Pinus sylvestris L.) needles as biomonitor in the determination of heavy metal accumulation. Appl Ecol Environ Res 18(2):3713–3727

    Article  Google Scholar 

  77. Ghoma WEO, Sevik H, Isinkaralar K (2022) Using indoor plants as biomonitors for detection of toxic metals by tobacco smoke. Air Qual Atmos Health 15:415–424. https://doi.org/10.1007/s11869-021-01146-z

    Article  CAS  Google Scholar 

  78. Isinkaralar K, Koc I, Erdem R, Sevik H (2022) Atmospheric Cd, Cr, and Zn deposition in several landscape plants in Mersin, Türkiye. Water Air Soil Pollut 233:120. https://doi.org/10.1007/s11270-022-05607-8

    Article  ADS  CAS  Google Scholar 

  79. Liu Y, Ta W, Cherubini P, Liu R, Wang Y, Sun C (2018) Elements content in tree rings from Xi’an, China and environmental variations in the past 30 years. Sci Total Environ 619:120–126. https://doi.org/10.1016/j.scitotenv.2017.11.075

    Article  ADS  CAS  PubMed  Google Scholar 

  80. Rajfur M (2019) Assessment of the possibility of using deciduous tree bark as a biomonitor of heavy metal pollution of atmospheric aerosol. Environ Sci Pollut Res 26(35):35945–35956. https://doi.org/10.1007/s11356-019-06581-1

    Article  CAS  Google Scholar 

  81. Koc I (2021) Using Cedrus atlantica’s annual rings as a biomonitor in observing the changes of Ni and Co concentrations in the atmosphere. Environ Sci Pollut Res 28(27):35880–35886. https://doi.org/10.1007/s11356-021-13272-3

    Article  CAS  Google Scholar 

  82. Kousehlar M, Widom E, Kuentz D (2021) Osmium isotope geochemistry of steel plant emissions using tree bark biomonitoring. Environ Pollut 272:115976. https://doi.org/10.1016/j.envpol.2020.115976

    Article  CAS  PubMed  Google Scholar 

  83. Karacocuk T, Sevik H, Isinkaralar K, Turkyilmaz A, Cetin M (2022) The change of Cr and Mn concentrations in selected plants in Samsun city center depending on traffic density. Landsc Ecol Eng 18(1):75–83. https://doi.org/10.1007/s11355-021-00483-6

    Article  Google Scholar 

  84. Perone A, Cocozza C, Cherubini P, Bachmann O, Guillong M, Lasserre B, Tognetti R (2018) Oak tree-rings record spatial-temporal pollution trends from different sources in Terni (Central Italy). Environ Pollut 233:278–289. https://doi.org/10.1016/j.envpol.2017.10.062

    Article  CAS  PubMed  Google Scholar 

  85. Locosselli GM, Chacón-Madrid K, Arruda MAZ, de Camargo EP, Moreira TCL, de André CDS et al (2018) Tree rings reveal the reduction of Cd, Cu, Ni and Pb pollution in the central region of São Paulo, Brazil. Environ Pollut 242:320–328. https://doi.org/10.1016/j.envpol.2018.06.098

    Article  CAS  PubMed  Google Scholar 

  86. Jeddi K, Fatnassi M, Chaieb M, Siddique KH (2021) Tree species as a biomonitor of metal pollution in arid Mediterranean environments: case for arid southern Tunisia. Environ Sci Pollut Res 28(22):28598–28605. https://doi.org/10.1007/s11356-021-12788-y

    Article  CAS  Google Scholar 

  87. Cooke CA, Martinez-Cortizas A, Bindler R, Gustin MS (2020) Environmental archives of atmospheric Hg deposition–a review. Sci Total Environ 709:134800. https://doi.org/10.1016/j.scitotenv.2019.134800

    Article  ADS  CAS  PubMed  Google Scholar 

  88. Patrick GJ, Farmer JG (2006) A stable lead isotopic investigation of the use of sycamore tree rings as a historical biomonitor of environmental lead contamination. Sci Total Environ 362(1-3):278–291. https://doi.org/10.1016/j.scitotenv.2005.12.004

    Article  ADS  CAS  PubMed  Google Scholar 

  89. Sevik H, Cetin M, Ozel HB, Akarsu H, Zeren Cetin I (2020) Analyzing of usability of tree-rings as biomonitors for monitoring heavy metal accumulation in the atmosphere in urban area: a case study of cedar tree (Cedrus sp.). Environ Monit Assess 192(1):1–11. https://doi.org/10.1007/s10661-019-8010-2

    Article  CAS  Google Scholar 

  90. Chen S, Yao Q, Chen X, Liu J, Chen D, Ou T, Liu J, Dong Z, Zheng Z, Fang K (2021) Tree-ring recorded variations of 10 heavy metal elements over the past 168 years in southeastern China. Elem Sci Anth 9(1):00075. https://doi.org/10.1525/elementa.2020.20.00075

    Article  Google Scholar 

  91. Zhang C, Huang B, Piper JD, Luo R (2008) Biomonitoring of atmospheric particulate matter using magnetic properties of Salix matsudana tree ring cores. Sci Total Environ 393(1):177–190. https://doi.org/10.1016/j.scitotenv.2007.12.032

    Article  ADS  CAS  PubMed  Google Scholar 

  92. Padilla KL, Anderson KA (2002) Trace element concentration in tree-rings biomonitoring centuries of environmental change. Chemosphere 49(6):575–585. https://doi.org/10.1016/S0045-6535(02)00402-2

    Article  ADS  CAS  PubMed  Google Scholar 

  93. Turkyilmaz A, Sevik H, Isinkaralar K, Cetin M (2018) Using Acer platanoides annual rings to monitor the amount of heavy metals accumulated in air. Environ Monit Assess 190(578):1–11. https://doi.org/10.1007/s10661-018-6956-0

    Article  CAS  Google Scholar 

  94. Cocozza C, Alterio E, Bachmann O, Guillong M, Sitzia T, Cherubini P (2021) Monitoring air pollution close to a cement plant and in a multi-source industrial area through tree-ring analysis. Environ Sci Pollut Res 28(38):54030–54040. https://doi.org/10.1007/s11356-021-14446-9

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kaan Isinkaralar.

Ethics declarations

Ethics approval

Not applicable

Consent to participate

Not applicable

Consent for publication

Not applicable

Conflict of interest

The author declares no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Isinkaralar, K. The large-scale period of atmospheric trace metal deposition to urban landscape trees as a biomonitor. Biomass Conv. Bioref. 14, 6455–6464 (2024). https://doi.org/10.1007/s13399-022-02796-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13399-022-02796-4

Keywords

Navigation