Skip to main content

Advertisement

Log in

Review on effect of biochar on soil strength: Towards exploring usage of biochar in geo-engineering infrastructure

  • Original Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

Biochar is an environment friendly material that has been widely adopted in various fields, such as agricultural, environmental and energy. On the contrary, the use of biochar in geoengineering infrastructure is still rare. The review critically summarizes the influence of biochar on soil strength in the context of geoengineering infrastructure. For an ease of understanding, a new index, biochar strength factor (BSF), has been introduced to assess the strength of biochar amended soils with respect to bare soil (BSF more than unity reflects an increase in strength, whereas BSF less than one indicates a decrease in strength). Further, in the review, a discussion has been put forward about the various pyrolysis production methods of biochar and its influence on physicochemical properties (i.e., particle size, density, porosity, surface area, etc.). Feedstocks and pyrolysis conditions govern physicochemical properties of biochar and alter soil bulk density, porosity, hydrophobicity/ hydrophilicity, aggregate stability, and water retention/holding capacity. Due to high porosity, low density, high compressibility, and water retention capacity, biochar addition is likely to reduce the BSF (decrease in shear, compressive, and tensile strength) for most of soils (except clayey). On the other hand, the biochar strength factor is greater than unity (BSF > 1) for clayey and expansive soil. BSF was found to vary significantly from as low as 0.25 for silty sand to as high as 2.97 for lean clay. However, the inherent mechanism seems yet to be investigated thoroughly. Compared to other cementing and reinforcement materials, the production, cost-effectiveness, and economy are also a matter of research. The future scope for understanding the soil-biochar interaction in geoengineering has been briefly discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

AWC:

Available water content

BAS:

Biochar amended soils

BET:

Brunauer Emmet Teller

BSF:

Biochar strength factor

CBC:

Cement-based composites

CEC:

Cation exchange capacity

EAB:

Engineered activated biochar

GHGs:

Greenhouse gases

IBI:

International biochar initiative

MAP:

Microwave-assisted pyrolysis

PAHs:

Polycyclic aromatic hydrocarbons

pH:

Potential of hydrogen

SBC:

Soil biochar composite

TP:

Terra Preta

WHC:

Water holding capacity

Ar:

Argon

C:

Carbon

Ca:

Calcium

Cu:

Copper

H:

Hydrogen

K:

Potassium

Mg:

Magnesium

N:

Nitrogen

Na:

Sodium

O:

Oxygen

P:

Phosphorous

CH4 :

Methane

CO:

Carbon monoxide

CO2 :

Carbon dioxide

Cu:

Copper

H2 :

Dihydrogen

H3PO4 :

Phosphoric acid

HCl:

Hydrochloric acid

K2CO3 :

Potassium carbonate

KOH:

Potassium hydroxide

Na2CO3 :

Sodium carbonate

NaOH:

Sodium hydroxide

NO:

Nitrogen oxide

NO2 :

Nitrogen dioxide

NO3 :

Nitrate

SO2 :

Sulphur dioxide

ZnCl2 :

Zinc chloride

C = N:

Nitrites

–C = O:

Ketones

–COOH:

Carboxyl group

–OH:

Hydroxyl group

–COOR:

Ester group

References

  1. Garg A, Huang H, Kushvaha V, Madhushri P, Kamchoom V, Wani I, Koshy N, Zhu HH (2020) Mechanism of biochar soil pore–gas–water interaction: gas properties of biochar-amended sandy soil at different degrees of compaction using KNN modeling. Acta Geophys 68(1):207–217. https://doi.org/10.1007/s11600-019-00387-y

    Article  Google Scholar 

  2. Wani I, Kumar H, Rangappa SM, Peng L, Siengchin S, Kushvaha V (2021) Multiple regression model for predicting cracks in soil amended with pig manure biochar and wood biochar. J Hazard Toxic Radioact Waste 25(1):04020061. https://doi.org/10.1061/(ASCE)HZ.2153-5515.0000561

  3. Garg A, Wani I, Zhu H, Kushvaha V (2021) Exploring efficiency of biochar in enhancing water retention in soils with varying grain size distributions using ANN technique. Acta Geotech 17(4):1315–1326. https://doi.org/10.1007/s11440-021-01411-6

    Article  Google Scholar 

  4. Wani I, Narde SR, Huang X, Remya N, Kushvaha V, Garg A (2021) Reviewing role of biochar in controlling soil erosion and considering future aspect of production using microwave pyrolysis process for the same. Biomass Convers Biorefinery. https://doi.org/10.1007/s13399-021-02060-1

  5. Lehmann J, Joseph S (2015) Biochar for environmental management: science, technology and implementation. Routledge

    Book  Google Scholar 

  6. Xu R, Qafoku NP, Van Ranst E et al (2016) Chapter one—Adsorption properties of subtropical and tropical variable charge soils: implications from climate change and biochar amendment. In: Sparks DL (ed) Advances in agronomy. Academic Press, pp 1–58

    Google Scholar 

  7. Wani I, Ramola S, Garg A, Kushvaha V (2021) Critical review of biochar applications in geoengineering infrastructure: moving beyond agricultural and environmental perspectives. Biomass Conv Bioref. https://doi.org/10.1007/s13399-021-01346-8

    Article  Google Scholar 

  8. Glaser B, Lehmann J, Zech W (2002) Ameliorating physical and chemical properties of highly weathered soils in the tropics with charcoal—a review. Biol Fertil Soils 35:219–230. https://doi.org/10.1007/s00374-002-0466-4

    Article  Google Scholar 

  9. Mokrzycki J, Michalak I, Rutkowski P (2021) Biochars obtained from freshwater biomass—green macroalga and hornwort as Cr(III) ions sorbents. Biomass Conv Bioref 11:301–313. https://doi.org/10.1007/s13399-020-00649-6

    Article  Google Scholar 

  10. Ouyang L, Wang F, Tang J et al (2013) Effects of biochar amendment on soil aggregates and hydraulic properties. J Soil Sci Plant Nutr 13:991–1002. https://doi.org/10.4067/S0718-95162013005000078

    Article  Google Scholar 

  11. Yang W, Wang Y, Sharma P et al (2017) Effect of naphthalene on transport and retention of biochar colloids through saturated porous media. Colloids Surf A 530:146–154. https://doi.org/10.1016/j.colsurfa.2017.07.010

    Article  Google Scholar 

  12. De Bhowmick G, Sarmah AK, Sen R (2018) Production and characterization of a value added biochar mix using seaweed, rice husk and pine sawdust: a parametric study. J Clean Prod 200:641–656. https://doi.org/10.1016/j.jclepro.2018.08.002

    Article  Google Scholar 

  13. Yang CD, Lu SG (2021) Effects of five different biochars on aggregation, water retention and mechanical properties of paddy soil: a field experiment of three-season crops. Soil Tillage Res 205:104798. https://doi.org/10.1016/j.still.2020.104798

    Article  Google Scholar 

  14. Aj C, Na P, de N R, R DA (2017) Good for sewage treatment and good for agriculture: algal based compost and biochar. J Environ Manage 200:105–113. https://doi.org/10.1016/j.jenvman.2017.05.082

    Article  Google Scholar 

  15. Kumar S, Masto RE, Ram LC et al (2013) Biochar preparation from Parthenium hysterophorus and its potential use in soil application. Ecol Eng 55:67–72. https://doi.org/10.1016/j.ecoleng.2013.02.011

    Article  Google Scholar 

  16. Masto RE, Kumar S, Rout TK et al (2013) Biochar from water hyacinth (Eichornia crassipes) and its impact on soil biological activity. Catena 111:64–71. https://doi.org/10.1016/j.catena.2013.06.025

    Article  Google Scholar 

  17. Patwa D, Muigai HH, Ravi K et al (2022) A novel application of biochar produced from invasive weeds and industrial waste in thermal backfill for crude oil industries. Waste Biomass Valor. https://doi.org/10.1007/s12649-022-01694-0

    Article  Google Scholar 

  18. Wani I, Sharma A, Kushvaha V et al (2020) Effect of pH, volatile content, and pyrolysis conditions on surface area and O/C and H/C ratios of biochar: towards understanding performance of biochar using simplified approach. J Hazard Toxic Radioact Waste 24:04020048. https://doi.org/10.1061/(ASCE)HZ.2153-5515.0000545

    Article  Google Scholar 

  19. Weber K, Quicker P (2018) Properties of biochar. Fuel 217:240–261. https://doi.org/10.1016/j.fuel.2017.12.054

    Article  Google Scholar 

  20. Ahmad M, Rajapaksha AU, Lim JE et al (2014) Biochar as a sorbent for contaminant management in soil and water: a review. Chemosphere 99:19–33. https://doi.org/10.1016/j.chemosphere.2013.10.071

    Article  Google Scholar 

  21. Ippolito JA, Cui L, Kammann C et al (2020) Feedstock choice, pyrolysis temperature and type influence biochar characteristics: a comprehensive meta-data analysis review. Biochar 2:421–438. https://doi.org/10.1007/s42773-020-00067-x

    Article  Google Scholar 

  22. Roberts DA, Paul NA, Dworjanyn SA et al (2015) Biochar from commercially cultivated seaweed for soil amelioration. Sci Rep 5:9665. https://doi.org/10.1038/srep09665

    Article  Google Scholar 

  23. Lei O, Zhang R (2013) Effects of biochars derived from different feedstocks and pyrolysis temperatures on soil physical and hydraulic properties. J Soils Sediments 13:1561–1572. https://doi.org/10.1007/s11368-013-0738-7

    Article  Google Scholar 

  24. Kong S-H, Loh S-K, Bachmann RT et al (2014) Biochar from oil palm biomass: a review of its potential and challenges. Renew Sustain Energy Rev 39:729–739. https://doi.org/10.1016/j.rser.2014.07.107

    Article  Google Scholar 

  25. Ren S, Lei H, Wang L, et al (2014) Hydrocarbon and hydrogen-rich syngas production by biomass catalytic pyrolysis and bio-oil upgrading over biochar catalysts

  26. Liu W-J, Jiang H, Yu H-Q (2015) Development of biochar-based functional materials: toward a sustainable platform carbon material. Chem Rev 115:12251–12285. https://doi.org/10.1021/acs.chemrev.5b00195

    Article  Google Scholar 

  27. Zaman CZ, Pal K, Yehye WA, et al (2017) Pyrolysis: a sustainable way to generate energy from waste. https://doi.org/10.5772/intechopen.69036

  28. Pandey D, Daverey A, Arunachalam K (2020) Biochar: production, properties and emerging role as a support for enzyme immobilization. J Clean Prod 255:120267. https://doi.org/10.1016/j.jclepro.2020.120267

    Article  Google Scholar 

  29. Varma AK, Thakur LS, Shankar R, Mondal P (2019) Pyrolysis of wood sawdust: effects of process parameters on products yield and characterization of products. Waste Manage 89:224–235. https://doi.org/10.1016/j.wasman.2019.04.016

    Article  Google Scholar 

  30. Asada T, Ishihara S, Yamane T et al (2002) Science of bamboo charcoal: study on carbonizing temperature of bamboo charcoal and removal capability of harmful gases. J Health Sci 48:473–479. https://doi.org/10.1248/jhs.48.473

    Article  Google Scholar 

  31. Choi WC, Yun HD, Lee JY (2012) Mechanical properties of mortar containing bio-char from pyrolysis. J Korea Inst Struct Maint Inspection 16:67–74. https://doi.org/10.11112/jksmi.2012.16.3.067

    Article  Google Scholar 

  32. Gupta S, Kua HW (2017) Factors determining the potential of biochar as a carbon capturing and sequestering construction material: critical review. J Mater Civ Eng 29:04017086. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001924

    Article  Google Scholar 

  33. Khushnood RA, Ahmad S, Restuccia L et al (2016) Carbonized nano/microparticles for enhanced mechanical properties and electromagnetic interference shielding of cementitious materials. Front Struct Civ Eng 10:209–213. https://doi.org/10.1007/s11709-016-0330-5

    Article  Google Scholar 

  34. Zhao MY, Enders A, Lehmann J (2014) Short- and long-term flammability of biochars. Biomass Bioenerg 69:183–191. https://doi.org/10.1016/j.biombioe.2014.07.017

    Article  Google Scholar 

  35. Gupta S, Kua HW (2019) Carbonaceous micro-filler for cement: effect of particle size and dosage of biochar on fresh and hardened properties of cement mortar. Sci Total Environ 662:952–962. https://doi.org/10.1016/j.scitotenv.2019.01.269

    Article  Google Scholar 

  36. Suarez-Riera D, Restuccia L, Ferro GA (2020) The use of biochar to reduce the carbon footprint of cement-based materials. Procedia Struct Integr 26:199–210. https://doi.org/10.1016/j.prostr.2020.06.023

    Article  Google Scholar 

  37. Gupta S, Kua HW, Low CY (2018) Use of biochar as carbon sequestering additive in cement mortar. Cement Concr Compos 87:110–129. https://doi.org/10.1016/j.cemconcomp.2017.12.009

    Article  Google Scholar 

  38. Chebil S, Chaala A, Roy C (2000) Use of softwood bark charcoal as a modifier for road bitumen. Fuel 79:671–683. https://doi.org/10.1016/S0016-2361(99)00196-9

    Article  Google Scholar 

  39. Walters RC, Fini EH, Abu-Lebdeh T (2014) Enhancing asphalt rheological behavior and aging susceptibility using bio-char and nano-clay. Am J Eng Appl Sci 7:66–76. https://doi.org/10.3844/ajeassp.2014.66.76

    Article  Google Scholar 

  40. Zhao S, Huang B, Shu X, Ye P (2014) Laboratory investigation of biochar-modified asphalt mixture. Transp Res Rec 2445:56–63. https://doi.org/10.3141/2445-07

    Article  Google Scholar 

  41. Zhao S, Huang B, Ye XP et al (2014) Utilizing bio-char as a bio-modifier for asphalt cement: a sustainable application of bio-fuel by-product. Fuel 133:52–62. https://doi.org/10.1016/j.fuel.2014.05.002

    Article  Google Scholar 

  42. Busscher WJ, Novak JM, Evans DE et al (2010) Influence of pecan biochar on physical properties of a Norfolk loamy sand. Soil Sci 175:10–14. https://doi.org/10.1097/SS.0b013e3181cb7f46

    Article  Google Scholar 

  43. Mukherjee A, Lal R (2013) Biochar impacts on soil physical properties and greenhouse gas emissions. Agronomy 3:313–339. https://doi.org/10.3390/agronomy3020313

    Article  Google Scholar 

  44. Novak JM, Lima I, Xing B, et al (2009) Characterization of designer biochar produced at different temperatures and their effects on a loamy sand. Annals of Environmental Science 3:

  45. Ronsse F, van Hecke S, Dickinson D, Prins W (2013) Production and characterization of slow pyrolysis biochar: influence of feedstock type and pyrolysis conditions. GCB Bioenergy 5:104–115. https://doi.org/10.1111/gcbb.12018

    Article  Google Scholar 

  46. Spokas KA, Cantrell KB, Novak JM et al (2012) Biochar: a synthesis of its agronomic impact beyond carbon sequestration. J Environ Qual 41:973–989. https://doi.org/10.2134/jeq2011.0069

    Article  Google Scholar 

  47. Tomczyk A, Sokołowska Z, Boguta P (2020) Biochar physicochemical properties: pyrolysis temperature and feedstock kind effects. Rev Environ Sci Biotechnol 19:191–215. https://doi.org/10.1007/s11157-020-09523-3

    Article  Google Scholar 

  48. Zhao S-X, Ta N, Wang X-D (2017) Effect of temperature on the structural and physicochemical properties of biochar with apple tree branches as feedstock material. Energies 10:1293. https://doi.org/10.3390/en10091293

    Article  Google Scholar 

  49. Nguyen BT, Lehmann J, Hockaday WC et al (2010) Temperature sensitivity of black carbon decomposition and oxidation. Environ Sci Technol 44:3324–3331. https://doi.org/10.1021/es903016y

    Article  Google Scholar 

  50. Zhang J, Liu J, Liu R (2015) Effects of pyrolysis temperature and heating time on biochar obtained from the pyrolysis of straw and lignosulfonate. Biores Technol 176:288–291. https://doi.org/10.1016/j.biortech.2014.11.011

    Article  Google Scholar 

  51. Lehmann J (2007) Bio-energy in the black. Front Ecol Environ 5:381–387. https://doi.org/10.1890/1540-9295(2007)5[381:BITB]2.0.CO;2

    Article  Google Scholar 

  52. Atkinson CJ, Fitzgerald JD, Hipps NA (2010) Potential mechanisms for achieving agricultural benefits from biochar application to temperate soils: a review. Plant Soil 337:1–18. https://doi.org/10.1007/s11104-010-0464-5

    Article  Google Scholar 

  53. Ramola S, Belwal T, Li CJ et al (2020) Improved lead removal from aqueous solution using novel porous bentonite- and calcite-biochar composite. Sci Total Environ 709:136171. https://doi.org/10.1016/j.scitotenv.2019.136171

    Article  Google Scholar 

  54. Ahmad M, Lee SS, Dou X et al (2012) Effects of pyrolysis temperature on soybean stover- and peanut shell-derived biochar properties and TCE adsorption in water. Biores Technol 118:536–544. https://doi.org/10.1016/j.biortech.2012.05.042

    Article  Google Scholar 

  55. Ghanim BM, Pandey DS, Kwapinski W, Leahy JJ (2016) Hydrothermal carbonisation of poultry litter: effects of treatment temperature and residence time on yields and chemical properties of hydrochars. Biores Technol 216:373–380. https://doi.org/10.1016/j.biortech.2016.05.087

    Article  Google Scholar 

  56. Mohan D, Sarswat A, Ok YS, Pittman CU (2014) Organic and inorganic contaminants removal from water with biochar, a renewable, low cost and sustainable adsorbent—a critical review. Biores Technol 160:191–202. https://doi.org/10.1016/j.biortech.2014.01.120

    Article  Google Scholar 

  57. Funke A, Ziegler F (2010) Hydrothermal carbonization of biomass: a summary and discussion of chemical mechanisms for process engineering. Biofuels Bioprod Biorefin 4:160–177. https://doi.org/10.1002/bbb.198

    Article  Google Scholar 

  58. Smith AM, Singh S, Ross AB (2016) Fate of inorganic material during hydrothermal carbonisation of biomass: influence of feedstock on combustion behaviour of hydrochar. Fuel 169:135–145. https://doi.org/10.1016/j.fuel.2015.12.006

    Article  Google Scholar 

  59. Castellini M, Giglio L, Niedda M et al (2015) Impact of biochar addition on the physical and hydraulic properties of a clay soil. Soil Tillage Res 154:1–13. https://doi.org/10.1016/j.still.2015.06.016

    Article  Google Scholar 

  60. Huang H, Cai WL, Zheng Q, Chen PN, Huang CR, Zeng QJ, Kumar H, Zhu HH, Garg A, Zheenbek K, Kushvaha V (2020) Gas permeability in soil amended with biochar at different compaction states. In: IOP Conference Series: Earth and Environmental Science. IOP Publishing, Vol. 463, No. 1, p. 012073. https://doi.org/10.1088/1755-1315/463/1/012073

  61. Lehmann J (2009) Terra Preta Nova—where to from here? In: Woods WI, Teixeira WG, Lehmann J et al (eds) Amazonian dark earths: Wim Sombroek’s vision. Springer, Netherlands, Dordrecht, pp 473–486

    Chapter  Google Scholar 

  62. Fredlund DG, Rahardjo H, Fredlund MD (2012) Unsaturated soil mechanics in engineering practice. John Wiley & Sons

    Book  Google Scholar 

  63. Hussain R, Ghosh KK, Garg A, Ravi K (2020) Effect of biochar produced from mesquite on the compaction characteristics and shear strength of a clayey sand. Geotech Geol Eng. https://doi.org/10.1007/s10706-020-01549-2

    Article  Google Scholar 

  64. Reddy KR, Yaghoubi P, Yukselen-Aksoy Y (2015) Effects of biochar amendment on geotechnical properties of landfill cover soil. Waste Manag Res 33:524–532. https://doi.org/10.1177/0734242X15580192

    Article  Google Scholar 

  65. Ni JJ, Chen XW, Ng CWW, Guo HW (2018) Effects of biochar on water retention and matric suction of vegetated soil. Géotechnique Lett 8:124–129. https://doi.org/10.1680/jgele.17.00180

    Article  Google Scholar 

  66. Williams JM, Latifi N, Vahedifard F (2018) Effects of biochar amendment on mechanical properties of buckshot clay. 125–134. https://doi.org/10.1061/9780784481592.013

  67. Haefele SM, Konboon Y, Wongboon W et al (2011) Effects and fate of biochar from rice residues in rice-based systems. Field Crop Res 121:430–440. https://doi.org/10.1016/j.fcr.2011.01.014

    Article  Google Scholar 

  68. Ekwue EI (1990) Organic-matter effects on soil strength properties. Soil Tillage Res 16:289–297. https://doi.org/10.1016/0167-1987(90)90102-J

    Article  Google Scholar 

  69. Piccolo A, Pietramellara G, Mbagwu JSC (1997) Use of humic substances as soil conditioners to increase aggregate stability. Geoderma 75:267–277. https://doi.org/10.1016/S0016-7061(96)00092-4

    Article  Google Scholar 

  70. Sun F, Lu S (2014) Biochars improve aggregate stability, water retention, and pore-space properties of clayey soil. J Plant Nutr Soil Sci 177:26–33. https://doi.org/10.1002/jpln.201200639

    Article  Google Scholar 

  71. Chan KY, Van Zwieten L, Meszaros I et al (2007) Agronomic values of greenwaste biochar as a soil amendment. Soil Res 45:629. https://doi.org/10.1071/SR07109

    Article  Google Scholar 

  72. Zong Y, Chen D, Lu S (2014) Impact of biochars on swell-shrinkage behavior, mechanical strength, and surface cracking of clayey soil. J Plant Nutr Soil Sci 177:920–926. https://doi.org/10.1002/jpln.201300596

    Article  Google Scholar 

  73. Foong SY, Liew RK, Yang Y et al (2020) Valorization of biomass waste to engineered activated biochar by microwave pyrolysis: progress, challenges, and future directions. Chem Eng J 389:124401. https://doi.org/10.1016/j.cej.2020.124401

    Article  Google Scholar 

  74. Glaser B, Haumaier L, Guggenberger G, Zech W (2001) The “Terra Preta” phenomenon: a model for sustainable agriculture in the humid tropics. Naturwissenschaften 88:37–41. https://doi.org/10.1007/s001140000193

    Article  Google Scholar 

  75. da Costa ML, Kern DC (1999) Geochemical signatures of tropical soils with archaeological black earth in the Amazon, Brazil. J Geochem Explor 66:369–385. https://doi.org/10.1016/S0375-6742(99)00038-2

    Article  Google Scholar 

  76. Bharath KN, Madhu P, Gowda TGY et al (2020) Alkaline effect on characterization of discarded waste of Moringa oleifera fiber as a potential eco-friendly reinforcement for biocomposites. J Polym Environ 28:2823–2836. https://doi.org/10.1007/s10924-020-01818-4

    Article  Google Scholar 

  77. Ramola S, Belwal T, Srivastava DrR (2020) Thermochemical conversion of biomass waste-based biochar for environment remediation. 1–16. https://doi.org/10.1007/978-3-030-11155-7_122-1

  78. Wang S, Dai G, Yang H, Luo Z (2017) Lignocellulosic biomass pyrolysis mechanism: a state-of-the-art review. Prog Energy Combust Sci 62:33–86. https://doi.org/10.1016/j.pecs.2017.05.004

    Article  Google Scholar 

  79. Chen D, Gao A, Cen K et al (2018) Investigation of biomass torrefaction based on three major components: hemicellulose, cellulose, and lignin. Energy Convers Manag 169:228–237. https://doi.org/10.1016/j.enconman.2018.05.063

    Article  Google Scholar 

  80. Zhang M, Gao B, Varnoosfaderani S et al (2013) Preparation and characterization of a novel magnetic biochar for arsenic removal. Biores Technol 130:457–462. https://doi.org/10.1016/j.biortech.2012.11.132

    Article  Google Scholar 

  81. Vijayaraghavan K (2019) Recent advancements in biochar preparation, feedstocks, modification, characterization and future applications. Environ Technol Rev 8:47–64. https://doi.org/10.1080/21622515.2019.1631393

    Article  Google Scholar 

  82. Anae J, Ahmad N, Kumar V et al (2021) Recent advances in biochar engineering for soil contaminated with complex chemical mixtures: remediation strategies and future perspectives. Sci Total Environ 767:144351. https://doi.org/10.1016/j.scitotenv.2020.144351

    Article  Google Scholar 

  83. Reddy KR, Yargicoglu EN, Yue D, Yaghoubi P (2014) Enhanced microbial methane oxidation in landfill cover soil amended with biochar. J Geotech Geoenviron Eng 140:04014047. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001148

    Article  Google Scholar 

  84. Song W, Guo M (2012) Quality variations of poultry litter biochar generated at different pyrolysis temperatures. J Anal Appl Pyrol 94:138–145. https://doi.org/10.1016/j.jaap.2011.11.018

    Article  Google Scholar 

  85. Sun Y, Gao B, Yao Y et al (2014) Effects of feedstock type, production method, and pyrolysis temperature on biochar and hydrochar properties. Chem Eng J 240:574–578. https://doi.org/10.1016/j.cej.2013.10.081

    Article  Google Scholar 

  86. Yang X, Zhang S, Ju M, Liu L (2019) Preparation and modification of biochar materials and their application in soil remediation. Appl Sci 9:1365. https://doi.org/10.3390/app9071365

    Article  Google Scholar 

  87. Manyà JJ (2012) Pyrolysis for biochar purposes: a review to establish current knowledge gaps and research needs. Environ Sci Technol 46:7939–7954. https://doi.org/10.1021/es301029g

    Article  Google Scholar 

  88. Zhao L, Cao X, Mašek O, Zimmerman A (2013) Heterogeneity of biochar properties as a function of feedstock sources and production temperatures. J Hazard Mater 256–257:1–9. https://doi.org/10.1016/j.jhazmat.2013.04.015

    Article  Google Scholar 

  89. Fazeli Sangani M, Abrishamkesh S, Owens G (2020) Physicochemical characteristics of biochars can be beneficially manipulated using post-pyrolyzed particle size modification. Biores Technol 306:123157. https://doi.org/10.1016/j.biortech.2020.123157

    Article  Google Scholar 

  90. Lua AC, Yang T, Guo J (2004) Effects of pyrolysis conditions on the properties of activated carbons prepared from pistachio-nut shells. J Anal Appl Pyrol 72:279–287. https://doi.org/10.1016/j.jaap.2004.08.001

    Article  Google Scholar 

  91. Chandra S, Bhattacharya J (2019) Influence of temperature and duration of pyrolysis on the property heterogeneity of rice straw biochar and optimization of pyrolysis conditions for its application in soils. J Clean Prod 215:1123–1139. https://doi.org/10.1016/j.jclepro.2019.01.079

    Article  Google Scholar 

  92. Vijayakumar A, Sebastian J (2018) Pyrolysis process to produce fuel from different types of plastic—a review. IOP Conf Ser Mater Sci Eng 396:012062. https://doi.org/10.1088/1757-899X/396/1/012062

    Article  Google Scholar 

  93. Kambo HS, Dutta A (2015) A comparative review of biochar and hydrochar in terms of production, physico-chemical properties and applications. Renew Sustain Energy Rev 45:359–378. https://doi.org/10.1016/j.rser.2015.01.050

    Article  Google Scholar 

  94. Brownsort PA (2009) Biomass pyrolysis processes: performance parameters and their influence on biochar system benefits

  95. Mohan D, Pittman CU, Steele PH (2006) Pyrolysis of wood/biomass for bio-oil: a critical review. Energy Fuels 20:848–889. https://doi.org/10.1021/ef0502397

    Article  Google Scholar 

  96. Li L, Rowbotham JS, Christopher Greenwell H, Dyer PW (2013) Chapter 8—An introduction to pyrolysis and catalytic pyrolysis: versatile techniques for biomass conversion. In: Suib SL (ed) New and future developments in catalysis. Elsevier, Amsterdam, pp 173–208

    Chapter  Google Scholar 

  97. Libra JA, Ro KS, Kammann C, et al (2011) Hydrothermal carbonization of biomass residuals: a comparative review of the chemistry, processes and applications of wet and dry pyrolysis

  98. Antal MJ, Grønli M (2003) The art, science, and technology of charcoal production. Ind Eng Chem Res 42:1619–1640. https://doi.org/10.1021/ie0207919

    Article  Google Scholar 

  99. Demirbas A, Arin G (2002) An overview of biomass pyrolysis. Energy Sources 24:471–482. https://doi.org/10.1080/00908310252889979

    Article  Google Scholar 

  100. Yanik J, Kornmayer C, Saglam M, Yüksel M (2007) Fast pyrolysis of agricultural wastes: characterization of pyrolysis products. Fuel Process Technol 88:942–947. https://doi.org/10.1016/j.fuproc.2007.05.002

    Article  Google Scholar 

  101. Demirbaş A (2001) Biomass resource facilities and biomass conversion processing for fuels and chemicals. Energy Convers Manag 42:1357–1378. https://doi.org/10.1016/S0196-8904(00)00137-0

    Article  Google Scholar 

  102. Gerçel HF (2002) Production and characterization of pyrolysis liquids from sunflower-pressed bagasse. Bioresour Technol 85:113–117. https://doi.org/10.1016/s0960-8524(02)00101-3

    Article  Google Scholar 

  103. Zhang L, Xu CC, Champagne P (2010) Overview of recent advances in thermo-chemical conversion of biomass. Energy Convers Manage 51:969–982. https://doi.org/10.1016/j.enconman.2009.11.038

    Article  Google Scholar 

  104. Hagemann N, Spokas K, Schmidt H-P et al (2018) Activated carbon, biochar and charcoal: linkages and synergies across pyrogenic carbon’s ABCs. Water 10:182. https://doi.org/10.3390/w10020182

    Article  Google Scholar 

  105. Pan YG, Velo E, Roca X et al (2000) Fluidized-bed co-gasification of residual biomass/poor coal blends for fuel gas production. Fuel 79:1317–1326. https://doi.org/10.1016/S0016-2361(99)00258-6

    Article  Google Scholar 

  106. Rousset P, Macedo L, Commandré J-M, Moreira A (2012) Biomass torrefaction under different oxygen concentrations and its effect on the composition of the solid by-product. J Anal Appl Pyrol 96:86–91. https://doi.org/10.1016/j.jaap.2012.03.009

    Article  Google Scholar 

  107. Behrendt F, Neubauer Y, Oevermann M et al (2008) Direct liquefaction of biomass. Chem Eng Technol 31:667–677. https://doi.org/10.1002/ceat.200800077

    Article  Google Scholar 

  108. Lam SS, Liew RK, Jusoh A et al (2016) Progress in waste oil to sustainable energy, with emphasis on pyrolysis techniques. Renew Sustain Energy Rev 53:741–753. https://doi.org/10.1016/j.rser.2015.09.005

    Article  Google Scholar 

  109. Lam SS, Liew RK, Wong YM et al (2017) Microwave-assisted pyrolysis with chemical activation, an innovative method to convert orange peel into activated carbon with improved properties as dye adsorbent. J Clean Prod 162:1376–1387. https://doi.org/10.1016/j.jclepro.2017.06.131

    Article  Google Scholar 

  110. Lam SS, Liew RK, Cheng CK, Chase HA (2015) Catalytic microwave pyrolysis of waste engine oil using metallic pyrolysis char. Appl Catal B 176–177:601–617. https://doi.org/10.1016/j.apcatb.2015.04.014

    Article  Google Scholar 

  111. Liew RK, Azwar E, Yek PNY et al (2018) Microwave pyrolysis with KOH/NaOH mixture activation: a new approach to produce micro-mesoporous activated carbon for textile dye adsorption. Biores Technol 266:1–10. https://doi.org/10.1016/j.biortech.2018.06.051

    Article  Google Scholar 

  112. de Jongh WA, Carrier M, Knoetze JHH (2011) Vacuum pyrolysis of intruder plant biomasses. J Anal Appl Pyrol 92:184–193. https://doi.org/10.1016/j.jaap.2011.05.015

    Article  Google Scholar 

  113. Nam WL, Phang XY, Su MH et al (2018) Production of bio-fertilizer from microwave vacuum pyrolysis of palm kernel shell for cultivation of Oyster mushroom (Pleurotus ostreatus). Sci Total Environ 624:9–16. https://doi.org/10.1016/j.scitotenv.2017.12.108

    Article  Google Scholar 

  114. Roy C, Pakdel H, Brouillard D (1990) The role of extractives during vacuum pyrolysis of wood. J Appl Polym Sci 41:337–348. https://doi.org/10.1002/app.1990.070410126

    Article  Google Scholar 

  115. Chen Z, Niu B, Zhang L, Xu Z (2018) Vacuum pyrolysis characteristics and parameter optimization of recycling organic materials from waste tantalum capacitors. J Hazard Mater 342:192–200. https://doi.org/10.1016/j.jhazmat.2017.08.021

    Article  Google Scholar 

  116. Lopez G, Aguado R, Olazar M et al (2009) Kinetics of scrap tyre pyrolysis under vacuum conditions. Waste Manag 29:2649–2655. https://doi.org/10.1016/j.wasman.2009.06.005

    Article  Google Scholar 

  117. Yek PNY, Liew RK, Osman MS et al (2017) Microwave pyrolysis using self-generated pyrolysis gas as activating agent: an innovative single-step approach to convert waste palm shell into activated carbon. E3S Web Conf 22:00195. https://doi.org/10.1051/e3sconf/20172200195

    Article  Google Scholar 

  118. Zeng K, Gauthier D, Soria J et al (2017) Solar pyrolysis of carbonaceous feedstocks: a review. Sol Energy 156:73–92. https://doi.org/10.1016/j.solener.2017.05.033

    Article  Google Scholar 

  119. Salema AA, Ani FN (2012) Microwave-assisted pyrolysis of oil palm shell biomass using an overhead stirrer. J Anal Appl Pyrol 96:162–172. https://doi.org/10.1016/j.jaap.2012.03.018

    Article  Google Scholar 

  120. Branca C, Di Blasi C, Mango C, Hrablay I (2013) Products and kinetics of Glucomannan pyrolysis. Ind Eng Chem Res 52:5030–5039. https://doi.org/10.1021/ie400155x

    Article  Google Scholar 

  121. Wang S, Guo X, Wang K, Luo Z (2011) Influence of the interaction of components on the pyrolysis behavior of biomass. J Anal Appl Pyrol 91:183–189. https://doi.org/10.1016/j.jaap.2011.02.006

    Article  Google Scholar 

  122. Wang Z, McDonald AG, Westerhof RJM et al (2013) Effect of cellulose crystallinity on the formation of a liquid intermediate and on product distribution during pyrolysis. J Anal Appl Pyrol 100:56–66. https://doi.org/10.1016/j.jaap.2012.11.017

    Article  Google Scholar 

  123. Ferrara F, Orsini A, Plaisant A, Pettinau A (2014) Pyrolysis of coal, biomass and their blends: performance assessment by thermogravimetric analysis. Bioresour Technol 171:433–441. https://doi.org/10.1016/j.biortech.2014.08.104

    Article  Google Scholar 

  124. Hossain MK, Strezov V, Chan KY et al (2011) Influence of pyrolysis temperature on production and nutrient properties of wastewater sludge biochar. J Environ Manage 92:223–228. https://doi.org/10.1016/j.jenvman.2010.09.008

    Article  Google Scholar 

  125. Zhang H, Voroney RP, Price GW (2015) Effects of temperature and processing conditions on biochar chemical properties and their influence on soil C and N transformations. Soil Biol Biochem 83:19–28. https://doi.org/10.1016/j.soilbio.2015.01.006

    Article  Google Scholar 

  126. Zhang Y, Wang J, Feng Y (2021) The effects of biochar addition on soil physicochemical properties: a review. Catena 202:105284. https://doi.org/10.1016/j.catena.2021.105284

    Article  Google Scholar 

  127. Cao X, Harris W (2010) Properties of dairy-manure-derived biochar pertinent to its potential use in remediation. Bioresour Technol 101:5222–5228. https://doi.org/10.1016/j.biortech.2010.02.052

    Article  Google Scholar 

  128. Robertson SJ, Rutherford PM, López-Gutiérrez JC, Massicotte HB (2012) Biochar enhances seedling growth and alters root symbioses and properties of sub-boreal forest soils. Can J Soil Sci 92:329–340. https://doi.org/10.4141/cjss2011-066

    Article  Google Scholar 

  129. Mukherjee A, Zimmerman AR (2013) Organic carbon and nutrient release from a range of laboratory-produced biochars and biochar–soil mixtures. Geoderma 193–194:122–130. https://doi.org/10.1016/j.geoderma.2012.10.002

    Article  Google Scholar 

  130. Bonelli PR, Buonomo EL, Cukierman AL (2007) Pyrolysis of sugarcane bagasse and co-pyrolysis with an Argentinean subbituminous coal. Energy Sources Part A Recover Utilization Environ Eff 29:731–740. https://doi.org/10.1080/00908310500281247

    Article  Google Scholar 

  131. Katyal S, Thambimuthu K, Valix M (2003) Carbonisation of bagasse in a fixed bed reactor: influence of process variables on char yield and characteristics. Renew Energy 28:713–725. https://doi.org/10.1016/S0960-1481(02)00112-X

    Article  Google Scholar 

  132. Ghani WAWAK, Mohd A, da Silva G et al (2013) Biochar production from waste rubber-wood-sawdust and its potential use in C sequestration: chemical and physical characterization. Ind Crops Prod 44:18–24. https://doi.org/10.1016/j.indcrop.2012.10.017

    Article  Google Scholar 

  133. Rafiq MK, Bachmann RT, Rafiq MT et al (2016) Influence of pyrolysis temperature on physico-chemical properties of corn stover (Zea mays L.) biochar and feasibility for carbon capture and energy balance. PloS One 11:e0156894. https://doi.org/10.1371/journal.pone.0156894

    Article  Google Scholar 

  134. Ahmad M, Ok YS, Kim B-Y et al (2016) Impact of soybean stover- and pine needle-derived biochars on Pb and As mobility, microbial community, and carbon stability in a contaminated agricultural soil. J Environ Manag 166:131–139. https://doi.org/10.1016/j.jenvman.2015.10.006

    Article  Google Scholar 

  135. Uchimiya M, Wartelle LH, Klasson KT et al (2011) Influence of pyrolysis temperature on biochar property and function as a heavy metal sorbent in soil. J Agric Food Chem 59:2501–2510. https://doi.org/10.1021/jf104206c

    Article  Google Scholar 

  136. Lehmann J (2007) A handful of carbon. Nature 447:143–144. https://doi.org/10.1038/447143a

    Article  Google Scholar 

  137. Chia CH, Downie A, Munroe P (2015) Characteristics of biochar: physical and structural properties. Biochar for Environmental Management 89–109

  138. Behl K, Sinha S, Sharma M et al (2019) One-time cultivation of Chlorella pyrenoidosa in aqueous dye solution supplemented with biochar for microalgal growth, dye decolorization and lipid production. Chem Eng J 364:552–561. https://doi.org/10.1016/j.cej.2019.01.180

    Article  Google Scholar 

  139. Al-Wabel MI, Al-Omran A, El-Naggar AH et al (2013) Pyrolysis temperature induced changes in characteristics and chemical composition of biochar produced from conocarpus wastes. Biores Technol 131:374–379. https://doi.org/10.1016/j.biortech.2012.12.165

    Article  Google Scholar 

  140. El-Naggar A, Lee SS, Rinklebe J et al (2019) Biochar application to low fertility soils: a review of current status, and future prospects. Geoderma 337:536–554. https://doi.org/10.1016/j.geoderma.2018.09.034

    Article  Google Scholar 

  141. Hassan M, Liu Y, Naidu R et al (2020) Influences of feedstock sources and pyrolysis temperature on the properties of biochar and functionality as adsorbents: a meta-analysis. Sci Total Environ 744:140714. https://doi.org/10.1016/j.scitotenv.2020.140714

    Article  Google Scholar 

  142. Harvey OR, Herbert BE, Kuo L-J, Louchouarn P (2012) Generalized two-dimensional perturbation correlation infrared spectroscopy reveals mechanisms for the development of surface charge and recalcitrance in plant-derived biochars. Environ Sci Technol 46:10641–10650. https://doi.org/10.1021/es302971d

    Article  Google Scholar 

  143. Sun Y, Xiong X, He M et al (2021) Roles of biochar-derived dissolved organic matter in soil amendment and environmental remediation: a critical review. Chem Eng J 424:130387. https://doi.org/10.1016/j.cej.2021.130387

    Article  Google Scholar 

  144. Song Y, Tahmasebi A, Yu J (2014) Co-pyrolysis of pine sawdust and lignite in a thermogravimetric analyzer and a fixed-bed reactor. Bioresour Technol 174:204–211. https://doi.org/10.1016/j.biortech.2014.10.027

    Article  Google Scholar 

  145. Van Zwieten L, Kimber S, Morris S et al (2010) Effects of biochar from slow pyrolysis of papermill waste on agronomic performance and soil fertility. Plant Soil 327:235–246. https://doi.org/10.1007/s11104-009-0050-x

    Article  Google Scholar 

  146. Pan J, Jiang J, Xu R (2013) Adsorption of Cr(III) from acidic solutions by crop straw derived biochars. J Environ Sci 25:1957–1965. https://doi.org/10.1016/S1001-0742(12)60305-2

    Article  Google Scholar 

  147. Lago BC, Silva CA, Melo LCA, de Morais EG (2021) Predicting biochar cation exchange capacity using Fourier transform infrared spectroscopy combined with partial least square regression. Sci Total Environ 794:148762. https://doi.org/10.1016/j.scitotenv.2021.148762

    Article  Google Scholar 

  148. Anto S, Sudhakar MP, Shan Ahamed T et al (2021) Activation strategies for biochar to use as an efficient catalyst in various applications. Fuel 285:119205. https://doi.org/10.1016/j.fuel.2020.119205

    Article  Google Scholar 

  149. Gargiulo V, Gomis-Berenguer A, Giudicianni P et al (2018) Assessing the potential of biochars prepared by steam-assisted slow pyrolysis for CO2 adsorption and separation. Energy Fuels 32:10218–10227. https://doi.org/10.1021/acs.energyfuels.8b01058

    Article  Google Scholar 

  150. Rostamian R, Heidarpour M, Mousavi SF, Afyuni M (2015) Characterization and sodium sorption capacity of biochar and activated carbon prepared from rice husk. J Agric Sci Technol 17:1057–1069

    Google Scholar 

  151. Zhang H, Voroney RP, Price GW (2017) Effects of temperature and activation on biochar chemical properties and their impact on ammonium, nitrate, and phosphate sorption. J Environ Qual 46:889–896. https://doi.org/10.2134/jeq2017.02.0043

    Article  Google Scholar 

  152. Shim T, Yoo J, Ryu C et al (2015) Effect of steam activation of biochar produced from a giant Miscanthus on copper sorption and toxicity. Bioresour Technol 197:85–90. https://doi.org/10.1016/j.biortech.2015.08.055

    Article  Google Scholar 

  153. Contescu CI, Adhikari SP, Gallego NC, et al (2018) Activated carbons derived from high-temperature pyrolysis of lignocellulosic biomass. C 4:51. https://doi.org/10.3390/c4030051

  154. Shahkarami S, Azargohar R, Dalai AK, Soltan J (2015) Breakthrough CO2 adsorption in bio-based activated carbons. J Environ Sci (China) 34:68–76. https://doi.org/10.1016/j.jes.2015.03.008

    Article  Google Scholar 

  155. Ao W, Fu J, Mao X et al (2018) Microwave assisted preparation of activated carbon from biomass: a review. Renew Sustain Energy Rev 92:958–979. https://doi.org/10.1016/j.rser.2018.04.051

    Article  Google Scholar 

  156. Zainal NH, Aziz AA, Idris J et al (2017) Microwave-assisted pre-carbonisation of palm kernel shell produced charcoal with high heating value and low gaseous emission. J Clean Prod 142:2945–2949. https://doi.org/10.1016/j.jclepro.2016.10.176

    Article  Google Scholar 

  157. Norouzi S, Heidari M, Alipour V et al (2018) Preparation, characterization and Cr(VI) adsorption evaluation of NaOH-activated carbon produced from Date Press Cake; an agro-industrial waste. Biores Technol 258:48–56. https://doi.org/10.1016/j.biortech.2018.02.106

    Article  Google Scholar 

  158. Yang K, Zhu L, Yang J, Lin D (2018) Adsorption and correlations of selected aromatic compounds on a KOH-activated carbon with large surface area. Sci Total Environ 618:1677–1684. https://doi.org/10.1016/j.scitotenv.2017.10.018

    Article  Google Scholar 

  159. Dawei L, Yu W, Jiaojiao Z et al (2018) Drying before microwave-assisted H3PO4 activation to produce highly mesoporous activated carbons. Mater Lett 230:61–63. https://doi.org/10.1016/j.matlet.2018.07.070

    Article  Google Scholar 

  160. Zyoud A, Nassar HNI, El-Hamouz A, Hilal HS (2015) Solid olive waste in environmental cleanup: enhanced nitrite ion removal by ZnCl2-activated carbon. J Environ Manage 152:27–35. https://doi.org/10.1016/j.jenvman.2015.01.001

    Article  Google Scholar 

  161. Yue L, Xia Q, Wang L et al (2018) CO2 adsorption at nitrogen-doped carbons prepared by K2CO3 activation of urea-modified coconut shell. J Colloid Interface Sci 511:259–267. https://doi.org/10.1016/j.jcis.2017.09.040

    Article  Google Scholar 

  162. Zhang J, Zhang W, Zhang H et al (2017) Facile preparation of water soluble phenol formaldehyde resin-derived activated carbon by Na2CO3 activation for high performance supercapacitors. Mater Lett 206:67–70. https://doi.org/10.1016/j.matlet.2017.06.091

    Article  Google Scholar 

  163. Li D, Li C, Tian Y, et al (2015) Influences of impregnation ratio and activation time on ultramicropores of peanut shell active carbons. Materials Letters C:340–343. https://doi.org/10.1016/j.matlet.2014.11.042

  164. Okman I, Karagöz S, Tay T, Erdem M (2014) Activated carbons from grape seeds by chemical activation with potassium carbonate and potassium hydroxide. Appl Surf Sci 293:138–142. https://doi.org/10.1016/j.apsusc.2013.12.117

    Article  Google Scholar 

  165. Üner O, Bayrak Y (2018) The effect of carbonization temperature, carbonization time and impregnation ratio on the properties of activated carbon produced from Arundo donax. Microporous Mesoporous Mater 268:225–234. https://doi.org/10.1016/j.micromeso.2018.04.037

    Article  Google Scholar 

  166. Vyrides I, Conteras PA, Stuckey DC (2010) Post-treatment of a submerged anaerobic membrane bioreactor (SAMBR) saline effluent using powdered activated carbon (PAC). J Hazard Mater 177:836–841. https://doi.org/10.1016/j.jhazmat.2009.12.109

    Article  Google Scholar 

  167. Julkapli NM, Bagheri S (2015) Graphene supported heterogeneous catalysts: an overview. Int J Hydrogen Energy 40:948–979. https://doi.org/10.1016/j.ijhydene.2014.10.129

    Article  Google Scholar 

  168. Matos I, Bernardo M, Fonseca I (2017) Porous carbon: a versatile material for catalysis. Catal Today 285:194–203. https://doi.org/10.1016/j.cattod.2017.01.039

    Article  Google Scholar 

  169. Li X, Jiang L, Zhou C et al (2015) Integrating large specific surface area and high conductivity in hydrogenated NiCo 2 O 4 double-shell hollow spheres to improve supercapacitors. NPG Asia Mater 7:e165–e165. https://doi.org/10.1038/am.2015.11

    Article  Google Scholar 

  170. Yu K, Zhu H, Qi H, Liang C (2018) High surface area carbon materials derived from corn stalk core as electrode for supercapacitor. Diam Relat Mater 88:18–22. https://doi.org/10.1016/j.diamond.2018.06.018

    Article  Google Scholar 

  171. Abioye AM, Ani FN (2015) Recent development in the production of activated carbon electrodes from agricultural waste biomass for supercapacitors: a review. Renew Sustain Energy Rev 52:1282–1293. https://doi.org/10.1016/j.rser.2015.07.129

    Article  Google Scholar 

  172. Severa G, Bethune K, Rocheleau R, Higgins S (2015) SO2 sorption by activated carbon supported ionic liquids under simulated atmospheric conditions. Chem Eng J 265:249–258. https://doi.org/10.1016/j.cej.2014.12.051

    Article  Google Scholar 

  173. Monkman S, MacDonald M (2017) On carbon dioxide utilization as a means to improve the sustainability of ready-mixed concrete. J Clean Prod 167:365–375. https://doi.org/10.1016/j.jclepro.2017.08.194

    Article  Google Scholar 

  174. Demirbas A (2011) Biodiesel from oilgae, biofixation of carbon dioxide by microalgae: a solution to pollution problems. Appl Energy 88:3541–3547. https://doi.org/10.1016/j.apenergy.2010.12.050

    Article  Google Scholar 

  175. Alvarez J, Lopez G, Amutio M et al (2016) Preparation of adsorbents from sewage sludge pyrolytic char by carbon dioxide activation. Process Saf Environ Prot 103:76–86. https://doi.org/10.1016/j.psep.2016.06.035

    Article  Google Scholar 

  176. Alvarez J, Lopez G, Amutio M et al (2015) Physical activation of rice husk pyrolysis char for the production of high surface area activated carbons. Ind Eng Chem Res 54:7241–7250. https://doi.org/10.1021/acs.iecr.5b01589

    Article  Google Scholar 

  177. Chang C-F, Chang C-Y, Tsai W-T (2000) Effects of burn-off and activation temperature on preparation of activated carbon from corn cob agrowaste by CO2 and steam. J Colloid Interface Sci 232:45–49. https://doi.org/10.1006/jcis.2000.7171

    Article  Google Scholar 

  178. Hameed BH, El-Khaiary MI (2008) Kinetics and equilibrium studies of malachite green adsorption on rice straw-derived char. J Hazard Mater 153:701–708. https://doi.org/10.1016/j.jhazmat.2007.09.019

    Article  Google Scholar 

  179. Liu W-J, Zeng F-X, Jiang H, Zhang X-S (2011) Preparation of high adsorption capacity bio-chars from waste biomass. Biores Technol 102:8247–8252. https://doi.org/10.1016/j.biortech.2011.06.014

    Article  Google Scholar 

  180. He L, Zhong H, Liu G et al (2019) Remediation of heavy metal contaminated soils by biochar: mechanisms, potential risks and applications in China. Environ Pollut 252:846–855. https://doi.org/10.1016/j.envpol.2019.05.151

    Article  Google Scholar 

  181. Qi F, Kuppusamy S, Naidu R et al (2017) Pyrogenic carbon and its role in contaminant immobilization in soils. Crit Rev Environ Sci Technol 47:795–876. https://doi.org/10.1080/10643389.2017.1328918

    Article  Google Scholar 

  182. Yang W, Wang Y, Shang J et al (2017) Antagonistic effect of humic acid and naphthalene on biochar colloid transport in saturated porous media. Chemosphere 189:556–564. https://doi.org/10.1016/j.chemosphere.2017.09.060

    Article  Google Scholar 

  183. Lu K, Yang X, Gielen G et al (2017) Effect of bamboo and rice straw biochars on the mobility and redistribution of heavy metals (Cd, Cu, Pb and Zn) in contaminated soil. J Environ Manag 186:285–292. https://doi.org/10.1016/j.jenvman.2016.05.068

    Article  Google Scholar 

  184. Meng J, Tao M, Wang L et al (2018) Changes in heavy metal bioavailability and speciation from a Pb-Zn mining soil amended with biochars from co-pyrolysis of rice straw and swine manure. Sci Total Environ 633:300–307. https://doi.org/10.1016/j.scitotenv.2018.03.199

    Article  Google Scholar 

  185. Yang X, Liu J, McGrouther K et al (2016) Effect of biochar on the extractability of heavy metals (Cd, Cu, Pb, and Zn) and enzyme activity in soil. Environ Sci Pollut Res 23:974–984. https://doi.org/10.1007/s11356-015-4233-0

    Article  Google Scholar 

  186. Ahmad Z, Gao B, Mosa A, et al (2018) Removal of Cu(II), Cd(II) and Pb(II) ions from aqueous solutions by biochars derived from potassium-rich biomass. Journal of cleaner production

  187. He P, Liu Y, Shao L et al (2018) Particle size dependence of the physicochemical properties of biochar. Chemosphere 212:385–392. https://doi.org/10.1016/j.chemosphere.2018.08.106

    Article  Google Scholar 

  188. Cho H-H, Wepasnick K, Smith BA et al (2010) Sorption of aqueous Zn[II] and Cd[II] by multiwall carbon nanotubes: the relative roles of oxygen-containing functional groups and graphenic carbon. Langmuir 26:967–981. https://doi.org/10.1021/la902440u

    Article  Google Scholar 

  189. Faria PCC, Orfão JJM, Pereira MFR (2004) Adsorption of anionic and cationic dyes on activated carbons with different surface chemistries. Water Res 38:2043–2052. https://doi.org/10.1016/j.watres.2004.01.034

    Article  Google Scholar 

  190. XueJiao T, JiuYu L, JinHua Y, RenKou X (2011) Adsorption of Cu(II) by biochars generated from three crop straws. Chem Eng J 172:828–834

    Article  Google Scholar 

  191. Li M, Lou Z, Wang Y et al (2015) Alkali and alkaline earth metallic (AAEM) species leaching and Cu(II) sorption by biochar. Chemosphere 119:778–785. https://doi.org/10.1016/j.chemosphere.2014.08.033

    Article  Google Scholar 

  192. Tang J, Zhu W, Kookana R, Katayama A (2013) Characteristics of biochar and its application in remediation of contaminated soil. J Biosci Bioeng 116:653–659. https://doi.org/10.1016/j.jbiosc.2013.05.035

    Article  Google Scholar 

  193. Lei S, Shi Y, Qiu Y et al (2019) Performance and mechanisms of emerging animal-derived biochars for immobilization of heavy metals. Sci Total Environ 646:1281–1289. https://doi.org/10.1016/j.scitotenv.2018.07.374

    Article  Google Scholar 

  194. Huang J-H, Hsu S-H, Wang S-L (2011) Effects of rice straw ash amendment on Cu solubility and distribution in flooded rice paddy soils. J Hazard Mater 186:1801–1807. https://doi.org/10.1016/j.jhazmat.2010.12.066

    Article  Google Scholar 

  195. Qian L, Chen B (2013) Dual role of biochars as adsorbents for aluminum: the effects of oxygen-containing organic components and the scattering of silicate particles. Environ Sci Technol 47:8759–8768. https://doi.org/10.1021/es401756h

    Article  Google Scholar 

  196. Xu X, Zhao Y, Sima J et al (2017) Indispensable role of biochar-inherent mineral constituents in its environmental applications: a review. Biores Technol 241:887–899. https://doi.org/10.1016/j.biortech.2017.06.023

    Article  Google Scholar 

  197. Dai Z, Zhang X, Tang C et al (2017) Potential role of biochars in decreasing soil acidification—a critical review. Sci Total Environ 581–582:601–611. https://doi.org/10.1016/j.scitotenv.2016.12.169

    Article  Google Scholar 

  198. Yu M, Meng J, Yu L et al (2019) Changes in nitrogen related functional genes along soil pH, C and nutrient gradients in the charosphere. Sci Total Environ 650:626–632. https://doi.org/10.1016/j.scitotenv.2018.08.372

    Article  Google Scholar 

  199. Duan R, Hu H-Q, Fu Q-L, Kou C-L (2017) Remediation of Cd/Ni contaminated soil by biochar and oxalic acid activated phosphate rock. Huan Jing Ke Xue 38:4836–4843. https://doi.org/10.13227/j.hjkx.201704028

    Article  Google Scholar 

  200. Kloss S, Zehetner F, Dellantonio A et al (2012) Characterization of slow pyrolysis biochars: effects of feedstocks and pyrolysis temperature on biochar properties. J Environ Qual 41:990. https://doi.org/10.2134/jeq2011.0070

    Article  Google Scholar 

  201. Zackrisson O, Nilsson M, Wardle D (1996) Key ecological function of charcoal from wildfire in the Boreal forest. https://doi.org/10.2307/3545580

  202. Cantrell KB, Hunt PG, Uchimiya M et al (2012) Impact of pyrolysis temperature and manure source on physicochemical characteristics of biochar. Biores Technol 107:419–428. https://doi.org/10.1016/j.biortech.2011.11.084

    Article  Google Scholar 

  203. Chen H, Zhou Y, Zhao H, Li Q (2018) A comparative study on behavior of heavy metals in pyrochar and hydrochar from sewage sludge. Energy Sources Part A Recover Utilization Environ Eff 40:565–571. https://doi.org/10.1080/15567036.2017.1399173

    Article  Google Scholar 

  204. Pituello C, Ferro ND, Francioso O et al (2018) Effects of biochar on the dynamics of aggregate stability in clay and sandy loam soils. Eur J Soil Sci 69:827–842. https://doi.org/10.1111/ejss.12676

    Article  Google Scholar 

  205. Singh B, Singh BP, Cowie AL (2010) Characterisation and evaluation of biochars for their application as a soil amendment. Soil Res 48:516. https://doi.org/10.1071/SR10058

    Article  Google Scholar 

  206. Zhou J, Ma H, Gao M et al (2018) Changes of chromium speciation and organic matter during low-temperature pyrolysis of tannery sludge. Environ Sci Pollut Res Int 25:2495–2505. https://doi.org/10.1007/s11356-017-0271-0

    Article  Google Scholar 

  207. Zhang W, Tong L, Yuan Y et al (2010) Influence of soil washing with a chelator on subsequent chemical immobilization of heavy metals in a contaminated soil. J Hazard Mater 178:578–587. https://doi.org/10.1016/j.jhazmat.2010.01.124

    Article  Google Scholar 

  208. Shu R, Dang F, Zhong H (2016) Effects of incorporating differently-treated rice straw on phytoavailability of methylmercury in soil. Chemosphere 145:457–463. https://doi.org/10.1016/j.chemosphere.2015.11.037

    Article  Google Scholar 

  209. Wang Y, Dang F, Zheng X, Zhong H (2019) Biochar amendment to further reduce methylmercury accumulation in rice grown in selenium-amended paddy soil. J Hazard Mater 365:590–596. https://doi.org/10.1016/j.jhazmat.2018.11.052

    Article  Google Scholar 

  210. Zhang Y, Liu Y-R, Lei P et al (2018) Biochar and nitrate reduce risk of methylmercury in soils under straw amendment. Sci Total Environ 619–620:384–390. https://doi.org/10.1016/j.scitotenv.2017.11.106

    Article  Google Scholar 

  211. Li Z, Deng H, Yang L et al (2018) Influence of potassium hydroxide activation on characteristics and environmental risk of heavy metals in chars derived from municipal sewage sludge. Bioresour Technol 256:216–223. https://doi.org/10.1016/j.biortech.2018.02.013

    Article  Google Scholar 

  212. Wang J, Xia K, Waigi MG et al (2018) Application of biochar to soils may result in plant contamination and human cancer risk due to exposure of polycyclic aromatic hydrocarbons. Environ Int 121:169–177. https://doi.org/10.1016/j.envint.2018.09.010

    Article  Google Scholar 

  213. Galbally DrP, Ryan T, Finnan J, et al (2014) Biosolids and distillery effluent amendments to Irish Miscanthus plantations: impacts on overland flow and surface water quality. Sustain Water Qual Ecol 3–4:. https://doi.org/10.1016/j.swaqe.2014.11.003

  214. Oleszczuk P, Jośko I, Kuśmierz M (2013) Biochar properties regarding to contaminants content and ecotoxicological assessment. J Hazard Mater 260:375–382. https://doi.org/10.1016/j.jhazmat.2013.05.044

    Article  Google Scholar 

  215. von Gunten K, Alam MdS, Hubmann M et al (2017) Modified sequential extraction for biochar and petroleum coke: metal release potential and its environmental implications. Biores Technol 236:106–110. https://doi.org/10.1016/j.biortech.2017.03.162

    Article  Google Scholar 

  216. Devi P, Saroha AK (2014) Risk analysis of pyrolyzed biochar made from paper mill effluent treatment plant sludge for bioavailability and eco-toxicity of heavy metals. Bioresour Technol 162:308–315. https://doi.org/10.1016/j.biortech.2014.03.093

    Article  Google Scholar 

  217. Zheng L, Wang W, Shi Y (2010) The effects of alkaline dosage and Si/Al ratio on the immobilization of heavy metals in municipal solid waste incineration fly ash-based geopolymer. Chemosphere 79:665–671. https://doi.org/10.1016/j.chemosphere.2010.02.018

    Article  Google Scholar 

  218. Hale SE, Lehmann J, Rutherford D et al (2012) Quantifying the total and bioavailable polycyclic aromatic hydrocarbons and dioxins in biochars. Environ Sci Technol 46:2830–2838. https://doi.org/10.1021/es203984k

    Article  Google Scholar 

  219. Xiang L, Liu S, Ye S et al (2021) Potential hazards of biochar: the negative environmental impacts of biochar applications. J Hazard Mater 420:126611. https://doi.org/10.1016/j.jhazmat.2021.126611

    Article  Google Scholar 

  220. Rombolà AG, Fabbri D, Baronti S et al (2019) Changes in the pattern of polycyclic aromatic hydrocarbons in soil treated with biochar from a multiyear field experiment. Chemosphere 219:662–670. https://doi.org/10.1016/j.chemosphere.2018.11.178

    Article  Google Scholar 

  221. Quilliam RS, Rangecroft S, Emmett BA et al (2013) Is biochar a source or sink for polycyclic aromatic hydrocarbon (PAH) compounds in agricultural soils? GCB Bioenergy 5:96–103. https://doi.org/10.1111/gcbb.12007

    Article  Google Scholar 

  222. Sørmo E, Silvani L, Thune G et al (2020) Waste timber pyrolysis in a medium-scale unit: emission budgets and biochar quality. Sci Total Environ 718:137335. https://doi.org/10.1016/j.scitotenv.2020.137335

    Article  Google Scholar 

  223. Assaf NW, Altarawneh M, Oluwoye I et al (2016) Formation of environmentally persistent free radicals on α-Al2O3. Environ Sci Technol 50:11094–11102. https://doi.org/10.1021/acs.est.6b02601

    Article  Google Scholar 

  224. Zhang K, Mao J, Chen B (2019) Reconsideration of heterostructures of biochars: morphology, particle size, elemental composition, reactivity and toxicity. Environ Pollut 254:113017. https://doi.org/10.1016/j.envpol.2019.113017

    Article  Google Scholar 

  225. Liao S, Pan B, Li H et al (2014) Detecting free radicals in biochars and determining their ability to inhibit the germination and growth of corn, wheat and rice seedlings. Environ Sci Technol 48:8581–8587. https://doi.org/10.1021/es404250a

    Article  Google Scholar 

  226. Choppala G, Bolan N, Kunhikrishnan A, Bush R (2016) Differential effect of biochar upon reduction-induced mobility and bioavailability of arsenate and chromate. Chemosphere 144:374–381. https://doi.org/10.1016/j.chemosphere.2015.08.043

    Article  Google Scholar 

  227. Mia S, Singh B, Dijkstra FA (2017) Aged biochar affects gross nitrogen mineralization and recovery: a 15N study in two contrasting soils. GCB Bioenergy 9:1196–1206. https://doi.org/10.1111/gcbb.12430

    Article  Google Scholar 

  228. Liu G, Chen L, Jiang Z et al (2017) Aging impacts of low molecular weight organic acids (LMWOAs) on furfural production residue-derived biochars: porosity, functional properties, and inorganic minerals. Sci Total Environ 607–608:1428–1436. https://doi.org/10.1016/j.scitotenv.2017.07.046

    Article  Google Scholar 

  229. Li H, Yu Y, Chen Y et al (2019) Biochar reduced soil extractable Cd but increased its accumulation in rice (Oryza sativa L.) cultivated on contaminated soils. J Soils Sediments 19:862–871. https://doi.org/10.1007/s11368-018-2072-6

    Article  Google Scholar 

  230. Khan S, Chao C, Waqas M et al (2013) Sewage sludge biochar influence upon rice (Oryza sativa L) yield, metal bioaccumulation and greenhouse gas emissions from acidic paddy soil. Environ Sci Technol 47:8624–8632. https://doi.org/10.1021/es400554x

    Article  Google Scholar 

  231. Cui H, Li D, Liu X et al (2021) Dry-wet and freeze-thaw aging activate endogenous copper and cadmium in biochar. J Clean Prod 288:125605. https://doi.org/10.1016/j.jclepro.2020.125605

    Article  Google Scholar 

  232. Kim H-B, Kim S-H, Jeon E-K et al (2018) Effect of dissolved organic carbon from sludge, rice straw and spent coffee ground biochar on the mobility of arsenic in soil. Sci Total Environ 636:1241–1248. https://doi.org/10.1016/j.scitotenv.2018.04.406

    Article  Google Scholar 

  233. Liu G, Zheng H, Jiang Z et al (2018) Formation and physicochemical characteristics of nano biochar: insight into chemical and colloidal stability. Environ Sci Technol 52:10369–10379. https://doi.org/10.1021/acs.est.8b01481

    Article  Google Scholar 

  234. Wang D, Zhang W, Zhou D (2013) Antagonistic effects of humic acid and iron oxyhydroxide grain-coating on biochar nanoparticle transport in saturated sand. Environ Sci Technol 47:5154–5161. https://doi.org/10.1021/es305337r

    Article  Google Scholar 

  235. Song B, Chen M, Zhao L et al (2019) Physicochemical property and colloidal stability of micron- and nano-particle biochar derived from a variety of feedstock sources. Sci Total Environ 661:685–695. https://doi.org/10.1016/j.scitotenv.2019.01.193

    Article  Google Scholar 

  236. Brewer CE, Unger R, Schmidt-Rohr K, Brown RC (2011) Criteria to select biochars for field studies based on biochar chemical properties. Bioenerg Res 4:312–323. https://doi.org/10.1007/s12155-011-9133-7

    Article  Google Scholar 

  237. Xie T, Reddy KR, Wang C et al (2015) Characteristics and applications of biochar for environmental remediation: a review. Crit Rev Environ Sci Technol 45:939–969. https://doi.org/10.1080/10643389.2014.924180

    Article  Google Scholar 

  238. Obia A, Cornelissen G, Mulder J, et al (2017) Effect of biochar on crust formation, penetration resistance and hydraulic properties of two coarse-textured tropical soils. Soil & tillage research. https://doi.org/10.1016/j.still.2017.03.009

  239. Palansooriya KN, Wong JTF, Hashimoto Y et al (2019) Response of microbial communities to biochar-amended soils: a critical review. Biochar 1:3–22. https://doi.org/10.1007/s42773-019-00009-2

    Article  Google Scholar 

  240. Singh V, Srivastava VC (2020) Self-engineered iron oxide nanoparticle incorporated on mesoporous biochar derived from textile mill sludge for the removal of an emerging pharmaceutical pollutant. Environ Pollut 259:113822. https://doi.org/10.1016/j.envpol.2019.113822

    Article  Google Scholar 

  241. Chen J, Li S, Liang C et al (2017) Response of microbial community structure and function to short-term biochar amendment in an intensively managed bamboo (Phyllostachys praecox) plantation soil: effect of particle size and addition rate. Sci Total Environ 574:24–33. https://doi.org/10.1016/j.scitotenv.2016.08.190

    Article  Google Scholar 

  242. Sun H, Hockaday WC, Masiello CA, Zygourakis K (2012) Multiple controls on the chemical and physical structure of biochars. Ind Eng Chem Res 51:3587–3597. https://doi.org/10.1021/ie201309r

    Article  Google Scholar 

  243. Valenzuela-Calahorro C, Bernalte-Garcia A, Gómez-Serrano V, Bernalte-García MJ (1987) Influence of particle size and pyrolysis conditions on yield, density and some textural parameters of chars prepared from holm-oak wood. J Anal Appl Pyrol 12:61–70. https://doi.org/10.1016/0165-2370(87)80015-3

    Article  Google Scholar 

  244. Liu Z, Dugan B, Masiello CA, Gonnermann HM (2017) Biochar particle size, shape, and porosity act together to influence soil water properties. PLoS One 12:e0179079. https://doi.org/10.1371/journal.pone.0179079

    Article  Google Scholar 

  245. Liang C, Gascó G, Fu S et al (2016) Biochar from pruning residues as a soil amendment: effects of pyrolysis temperature and particle size. Soil Tillage Res 164:3–10. https://doi.org/10.1016/j.still.2015.10.002

    Article  Google Scholar 

  246. Brown RA, Kercher AK, Nguyen TH et al (2006) Production and characterization of synthetic wood chars for use as surrogates for natural sorbents. Org Geochem 37:321–333. https://doi.org/10.1016/j.orggeochem.2005.10.008

    Article  Google Scholar 

  247. Oguntunde PG, Abiodun BJ, Ajayi AE, van de Giesen N (2008) Effects of charcoal production on soil physical properties in Ghana. J Plant Nutr Soil Sci 171:591–596. https://doi.org/10.1002/jpln.200625185

    Article  Google Scholar 

  248. Pratiwi EPA, Shinogi Y (2016) Rice husk biochar application to paddy soil and its effects on soil physical properties, plant growth, and methane emission. Paddy Water Environ 14:521–532. https://doi.org/10.1007/s10333-015-0521-z

    Article  Google Scholar 

  249. Laird DA, Fleming P, Davis DD et al (2010) Impact of biochar amendments on the quality of a typical Midwestern agricultural soil. Geoderma 158:443–449. https://doi.org/10.1016/j.geoderma.2010.05.013

    Article  Google Scholar 

  250. Gluba Ł, Rafalska-Przysucha A, Szewczak K et al (2021) Effect of fine size-fractionated sunflower husk biochar on water retention properties of arable sandy soil. Materials 14:1335. https://doi.org/10.3390/ma14061335

    Article  Google Scholar 

  251. Patwa D, Chandra A, Ravi K, Sreedeep S (2021) Influence of biochar particle size fractions on thermal and mechanical properties of biochar-amended soil. J Mater Civ Eng 33:04021236. https://doi.org/10.1061/(ASCE)MT.1943-5533.0003915

    Article  Google Scholar 

  252. Ajayi AE, Horn R (2016) Modification of chemical and hydrophysical properties of two texturally differentiated soils due to varying magnitudes of added biochar. Soil Tillage Res 164:34–44. https://doi.org/10.1016/j.still.2016.01.011

    Article  Google Scholar 

  253. Liao W, Thomas S (2019) Biochar particle size and post-pyrolysis mechanical processing affect soil pH, water retention capacity, and plant performance. Soil Syst 3:14. https://doi.org/10.3390/soilsystems3010014

    Article  Google Scholar 

  254. Zhang X, Wang K, Sun C, et al (2022) Differences in soil physical properties caused by applying three organic amendments to loamy clay soil under field conditions. J Soils Sediments 22:. https://doi.org/10.1007/s11368-021-03049-z

  255. Kameyama K, Miyamoto T, Shiono T, Shinogi Y (2012) Influence of sugarcane bagasse-derived biochar application on nitrate leaching in calcaric dark red soil. J Environ Qual 41:1131–1137. https://doi.org/10.2134/jeq2010.0453

    Article  Google Scholar 

  256. Bird MI, Wurster CM, de Paula Silva PH et al (2011) Algal biochar—production and properties. Bioresour Technol 102:1886–1891. https://doi.org/10.1016/j.biortech.2010.07.106

    Article  Google Scholar 

  257. Keiluweit M, Nico PS, Johnson MG, Kleber M (2010) Dynamic molecular structure of plant biomass-derived black carbon (Biochar). Environ Sci Technol 44:1247–1253. https://doi.org/10.1021/es9031419

    Article  Google Scholar 

  258. Zhang J, Amonette JE, Flury M (2021) Effect of biochar and biochar particle size on plant-available water of sand, silt loam, and clay soil. Soil Tillage Res 212:104992. https://doi.org/10.1016/j.still.2021.104992

    Article  Google Scholar 

  259. Rasa K, Heikkinen J, Hannula M et al (2018) How and why does willow biochar increase a clay soil water retention capacity? Biomass Bioenerg 119:346–353. https://doi.org/10.1016/j.biombioe.2018.10.004

    Article  Google Scholar 

  260. Wang Y (2019) Heavy metal pollution in soil and agricultural products on roadside of highway in seasonally frozen soil area. undefined

  261. Herath HMSK, Camps-Arbestain M, Hedley M (2013) Effect of biochar on soil physical properties in two contrasting soils: an Alfisol and an Andisol. Geoderma 209–210:188–197. https://doi.org/10.1016/j.geoderma.2013.06.016

    Article  Google Scholar 

  262. Kelly CN, Benjamin J, Calderón FC et al (2017) Incorporation of biochar carbon into stable soil aggregates: the role of clay mineralogy and other soil characteristics. Pedosphere 27:694–704. https://doi.org/10.1016/S1002-0160(17)60399-0

    Article  Google Scholar 

  263. Curaqueo G, Meier S, Khan N et al (2014) Use of biochar on two volcanic soils: effects on soil properties and barley yield. J Soil Sci Plant Nutr 14:911–924. https://doi.org/10.4067/S0718-95162014005000072

    Article  Google Scholar 

  264. Dong X, Guan T, Li G et al (2016) Long-term effects of biochar amount on the content and composition of organic matter in soil aggregates under field conditions. J Soils Sediments 16:1481–1497. https://doi.org/10.1007/s11368-015-1338-5

    Article  Google Scholar 

  265. Moragues-Saitua L, Arias-González A, Gartzia-Bengoetxea N (2017) Effects of biochar and wood ash on soil hydraulic properties: a field experiment involving contrasting temperate soils. Geoderma 305:144–152. https://doi.org/10.1016/j.geoderma.2017.05.041

    Article  Google Scholar 

  266. Głąb T, Palmowska J, Zaleski T, Gondek K (2016) Effect of biochar application on soil hydrological properties and physical quality of sandy soil. Geoderma 281:11–20. https://doi.org/10.1016/j.geoderma.2016.06.028

    Article  Google Scholar 

  267. Major J, Lehmann J, Rondon M, Goodale C (2010) Fate of soil-applied black carbon: downward migration, leaching and soil respiration. Glob Change Biol 16:1366–1379. https://doi.org/10.1111/j.1365-2486.2009.02044.x

    Article  Google Scholar 

  268. Uzoma KC, Inoue M, Andry H et al (2011) Influence of biochar application on sandy soil hydraulic properties and nutrient retention. J Food Agric Environ 9:1137–1143

    Google Scholar 

  269. Zhang J, Chen Q, You C (2016) Biochar effect on water evaporation and hydraulic conductivity in sandy soil. Pedosphere 26:265–272. https://doi.org/10.1016/S1002-0160(15)60041-8

    Article  Google Scholar 

  270. Barnes RT, Gallagher ME, Masiello CA et al (2014) Biochar-induced changes in soil hydraulic conductivity and dissolved nutrient fluxes constrained by laboratory experiments. PLoS One 9:e108340. https://doi.org/10.1371/journal.pone.0108340

    Article  Google Scholar 

  271. Brockhoff SR, Christians NE, Killorn RJ et al (2010) Physical and mineral-nutrition properties of sand-based turfgrass root zones amended with biochar. Agron J 102:1627–1631. https://doi.org/10.2134/agronj2010.0188

    Article  Google Scholar 

  272. Githinji L (2014) Effect of biochar application rate on soil physical and hydraulic properties of a sandy loam. Arch Agron Soil Sci 60:457–470. https://doi.org/10.1080/03650340.2013.821698

    Article  Google Scholar 

  273. Uzoma KC, Inoue M, Andry H et al (2011) Effect of cow manure biochar on maize productivity under sandy soil condition. Soil Use Manag 27:205–212. https://doi.org/10.1111/j.1475-2743.2011.00340.x

    Article  Google Scholar 

  274. Rogovska N, Laird DA, Rathke SJ, Karlen DL (2014) Biochar impact on Midwestern Mollisols and maize nutrient availability. Geoderma 230–231:340–347. https://doi.org/10.1016/j.geoderma.2014.04.009

    Article  Google Scholar 

  275. Khademalrasoul A, Naveed M, Heckrath G et al (2014) Biochar effects on soil aggregate properties under no-till maize. Soil Sci 179:273–283. https://doi.org/10.1097/SS.0000000000000069

    Article  Google Scholar 

  276. Zhang Q, Wang Y, Wu Y et al (2013) Effects of biochar amendment on soil thermal conductivity, reflectance, and temperature. Soil Sci Soc Am J 77:1478–1487. https://doi.org/10.2136/sssaj2012.0180

    Article  Google Scholar 

  277. Kumar H, Cai W, Lai J et al (2020) Influence of in-house produced biochars on cracks and retained water during drying-wetting cycles: comparison between conventional plant, animal, and nano-biochars. J Soils Sediments 20:1983–1996. https://doi.org/10.1007/s11368-020-02573-8

    Article  Google Scholar 

  278. Sadasivam BY, Reddy KR (2015) Engineering properties of waste wood-derived biochars and biochar-amended soils. Int J Geotech Eng 9:521–535. https://doi.org/10.1179/1939787915Y.0000000004

    Article  Google Scholar 

  279. Pardo GS, Sarmah AK, Orense RP (2018) Mechanism of improvement of biochar on shear strength and liquefaction resistance of sand. Géotechnique 69:471–480. https://doi.org/10.1680/jgeot.17.P.040

    Article  Google Scholar 

  280. Naik SP, Choudhury B, Garg A (2021) Laboratory investigations of liquefaction mitigation of Ganga sand using stable carbon material: a case study. Int J Geosynth Ground Eng 7:89. https://doi.org/10.1007/s40891-021-00333-3

    Article  Google Scholar 

  281. Mei G, Kumar H, Huang H et al (2020) Desiccation cracks mitigation using biomass derived carbon produced from aquatic species in South China Sea. Waste Biomass Valor. https://doi.org/10.1007/s12649-020-01057-7

    Article  Google Scholar 

  282. Bazargan A, Rough SL, McKay G (2014) Compaction of palm kernel shell biochars for application as solid fuel. Biomass Bioenerg 70:489–497. https://doi.org/10.1016/j.biombioe.2014.08.015

    Article  Google Scholar 

  283. Lamprinakos R, Manahiloh KN (2019) Evaluating the compaction behavior of soils with biochar amendment. 141–147. https://doi.org/10.1061/9780784482117.013

  284. Sudhakar A, Remya N, Varghese GK (2017) Estimation of effect of sugarcane bagasse biochar amendment in landfill soil cover on geotechnical properties and landfill gas emission. Environ Qual Manage 27:33–39. https://doi.org/10.1002/tqem.21528

    Article  Google Scholar 

  285. Xu K, Yang B, Wang J, Wu M (2020) Improvement of mechanical properties of clay in landfill lines with biochar additive. Arab J Geosci 13:584. https://doi.org/10.1007/s12517-020-05622-1

    Article  Google Scholar 

  286. Sarkar A, Pattanayak S, Guharay A et al (2020) Influence of in-house produced biochar on geotechnical properties of expansive clay. IOP Conf Series Earth Environ Sci 463:012072. https://doi.org/10.1088/1755-1315/463/1/012072

    Article  Google Scholar 

  287. Jyoti Bora M, Bordoloi S, Kumar H, et al (2020) Influence of biochar from animal and plant origin on the compressive strength characteristics of degraded landfill surface soils. Int J Damage Mech 1056789520925524. https://doi.org/10.1177/1056789520925524

  288. Ruan X, Sun Y, Du W et al (2019) Formation, characteristics, and applications of environmentally persistent free radicals in biochars: a review. Bioresour Technol 281:457–468. https://doi.org/10.1016/j.biortech.2019.02.105

    Article  Google Scholar 

  289. Wang L, Chen L, Tsang DCW et al (2020) Biochar as green additives in cement-based composites with carbon dioxide curing. J Clean Prod 258:120678. https://doi.org/10.1016/j.jclepro.2020.120678

    Article  Google Scholar 

  290. Gupta S, Kua HW, Tan Cynthia SY (2017) Use of biochar-coated polypropylene fibers for carbon sequestration and physical improvement of mortar. Cement Concr Compos 83:171–187. https://doi.org/10.1016/j.cemconcomp.2017.07.012

    Article  Google Scholar 

  291. Matalkah F, Darsanasiri AGND, Abideen S et al (2017) Alkali-activation of non-wood biomass ash: effects of ash characteristics on concrete performance. Civil Eng J 3:365–371. https://doi.org/10.28991/cej-2017-00000097

    Article  Google Scholar 

  292. Wulandari M, Tavio T, Raka IGP, Puryanto P (2018) Compressive strength of steel-fiber concrete with artificial lightweight aggregate (ALWA). Civil Eng J 4:2011–2022. https://doi.org/10.28991/cej-03091134

    Article  Google Scholar 

  293. Wang W, Wen C, Li C et al (2019) Emission reduction of particulate matter from the combustion of biochar via thermal pre-treatment of torrefaction, slow pyrolysis or hydrothermal carbonisation and its co-combustion with pulverized coal. Fuel 240:278–288. https://doi.org/10.1016/j.fuel.2018.11.117

    Article  Google Scholar 

  294. Li H-D, Tang C-S, Cheng Q et al (2019) Tensile strength of clayey soil and the strain analysis based on image processing techniques. Eng Geol 253:137–148. https://doi.org/10.1016/j.enggeo.2019.03.017

    Article  Google Scholar 

  295. Garg A, Reddy NG, Huang H, Buragohain P, Kushvaha V (2020) Modelling contaminant transport in fly ash–bentonite composite landfill liner: mechanism of different types of ions. Sci Rep 10(1). https://doi.org/10.1038/s41598-020-68198-6

  296. Ahmed MB, Zhou JL, Ngo HH, Guo W (2016) Insight into biochar properties and its cost analysis

  297. Rajabi Hamedani S, Kuppens T, Malina R et al (2019) Life cycle assessment and environmental valuation of biochar production: two case studies in Belgium. Energies 12:2166. https://doi.org/10.3390/en12112166

    Article  Google Scholar 

  298. Bordoloi S, Garg A, Sreedeep S et al (2018) Investigation of cracking and water availability of soil-biochar composite synthesized from invasive weed water hyacinth. Biores Technol 263:665–677. https://doi.org/10.1016/j.biortech.2018.05.011

    Article  Google Scholar 

  299. Yoder J, Galinato S, Granatstein D, Garcia-Pérez M (2011) Economic tradeoff between biochar and bio-oil production via pyrolysis. Biomass Bioenerg 35:1851–1862. https://doi.org/10.1016/j.biombioe.2011.01.026

    Article  Google Scholar 

  300. Pratt K, Moran D (2010) Evaluating the cost-effectiveness of global biochar mitigation potential. Biomass Bioenerg 34:1149–1158. https://doi.org/10.1016/j.biombioe.2010.03.004

    Article  Google Scholar 

  301. Meyer S, Glaser B, Quicker P (2011) Technical, economical, and climate-related aspects of biochar production technologies: a literature review. Environ Sci Technol 45:9473–9483. https://doi.org/10.1021/es201792c

    Article  Google Scholar 

  302. Roberts KG, Gloy BA, Joseph S et al (2010) Life cycle assessment of biochar systems: estimating the energetic, economic, and climate change potential. Environ Sci Technol 44:827–833. https://doi.org/10.1021/es902266r

    Article  Google Scholar 

  303. Fornes F, Belda RM, Lidón A (2015) Analysis of two biochars and one hydrochar from different feedstock: focus set on environmental, nutritional and horticultural considerations. J Clean Prod 86:40–48. https://doi.org/10.1016/j.jclepro.2014.08.057

    Article  Google Scholar 

  304. Li S, Chen G (2018) Thermogravimetric, thermochemical, and infrared spectral characterization of feedstocks and biochar derived at different pyrolysis temperatures. Waste Manag 78:198–207. https://doi.org/10.1016/j.wasman.2018.05.048

    Article  Google Scholar 

  305. Chen M, Alim N, Zhang Y et al (2018) Contrasting effects of biochar nanoparticles on the retention and transport of phosphorus in acidic and alkaline soils. Environ Pollut 239:562–570. https://doi.org/10.1016/j.envpol.2018.04.050

    Article  Google Scholar 

  306. Wang D, Zhang W, Hao X, Zhou D (2013) Transport of biochar particles in saturated granular media: effects of pyrolysis temperature and particle size. Environ Sci Technol 47:821–828. https://doi.org/10.1021/es303794d

    Article  Google Scholar 

  307. Joseph S, Camps-Arbestain M, Lin Y, et al (2010) An investigation into the reactions of biochar in soil. C S I R O Publishing

  308. El-Naggar A, Lee M-H, Hur J et al (2020) Biochar-induced metal immobilization and soil biogeochemical process: an integrated mechanistic approach. Sci Total Environ 698:134112. https://doi.org/10.1016/j.scitotenv.2019.134112

    Article  Google Scholar 

  309. Lehmann J, Rillig MC, Thies J et al (2011) Biochar effects on soil biota—a review. Soil Biol Biochem 43:1812–1836. https://doi.org/10.1016/j.soilbio.2011.04.022

    Article  Google Scholar 

  310. Zhu X, Chen B, Zhu L, Xing B (2017) Effects and mechanisms of biochar-microbe interactions in soil improvement and pollution remediation: a review. Environ Pollut 227:98–115. https://doi.org/10.1016/j.envpol.2017.04.032

    Article  Google Scholar 

  311. Gondek K, Mierzwa-Hersztek M, Baran A et al (2017) The effect of low-temperature conversion of plant materials on the chemical composition and ecotoxicity of biochars. Waste Biomass Valor 8:599–609. https://doi.org/10.1007/s12649-016-9621-2

    Article  Google Scholar 

Download references

Acknowledgements

Authors are grateful to Dr Sudipta Ramola for providing her suggestions and input on the role of biochar production and pyrolysis.

Funding

Authors are grateful to the National Natural Science Foundation of China (NSFC project no. 41907252) for support.

Author information

Authors and Affiliations

Authors

Contributions

First author is responsible for initial draft of manuscript. Second author is responsible for funding and supervision of first author. Third author is responsible for co-supervision, ideation, conceptualization, and drafting of table that contains review of strength of biochar amended soils. Fourth and fifth authors are responsible for revision and adding environmental aspects of biochar. Last author is responsible for overall checking of manuscript and also providing comments and suggestions for improving review of biochar with respect to pyrolysis.

Corresponding author

Correspondence to Ankit Garg.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wani, I., Kushvaha, V., Garg, A. et al. Review on effect of biochar on soil strength: Towards exploring usage of biochar in geo-engineering infrastructure. Biomass Conv. Bioref. (2022). https://doi.org/10.1007/s13399-022-02795-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13399-022-02795-5

Keywords

Navigation