Skip to main content
Log in

Biochar as sustainable adsorbents for chromium ion removal from aqueous environment: a review

  • Review Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

The heavy metal pollution in the aqueous environment increases day by day due to the tremendous growth of industries and population. They are non-biodegradable and persistent in the aqueous environment for a long time and threaten the environment. The chromium exists in the aqueous environment as Cr(III) and Cr(VI), out of which Cr(VI) is the most hazardous oxidation state. Exceeding the level of the chromium ions in the drinking water greater than the permissible limit leads to various chronic health risks for both flora and fauna. The current scenario is that the remediation of the chromium ion from the aqueous environment has become the thirst of the universe. There are various remediation approaches applied for the extraction of chromium ions from the aqueous environment. Adsorption is the most optimized approach for the extraction of chromium ions from the aqueous environment because of the lower operational cost, easy operation, and produce less harmful by-products. Conventionally, ample adsorbents have been employed for the extraction of the chromium ion from the aqueous environment, but they are suffering from several limitations such as lower efficiency, higher cost, and poor selectivity. Biochar is a promising adsorbent for the removal of chromium ions from the aqueous environment. In this review, recent advancement in the biochar employed as the adsorbent for the extraction of chromium has been discussed.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Zhao N, Yin Z, Liu F, Zhang M, Lv Y, Hao Z et al (2018) Environmentally persistent free radicals mediated removal of Cr(VI) from highly saline water by corn straw biochars. Bioresour Technol 260:294–301. https://doi.org/10.1016/j.biortech.2018.03.11

    Article  CAS  PubMed  Google Scholar 

  2. Mohan D, Pittman CU Jr (2006) Activated carbons and low cost adsorbents for remediation of tri-and hexavalent chromium from water. J Hazard Mater 137(2):762–811. https://doi.org/10.1016/j.jhazmat.2006.06.060

    Article  CAS  PubMed  Google Scholar 

  3. Mohan D, Singh KP, Singh VK (2005) Removal of hexavalent chromium from aqueous solution using low-cost activated carbons derived from agricultural waste materials and activated carbon fabric cloth. Ind Eng Chem Res 44:1027–1042. https://doi.org/10.1021/ie0400898

    Article  CAS  Google Scholar 

  4. Vilar VJ, Valle JA, Bhatnagar A, Santos JC, de Souza SMGU, de Souza AAU, Botelho CMS, Boaventura RA (2012) Insights into trivalent chromium biosorption onto protonated brown algae Pelvetiacanaliculata: distribution of chromium ionic species on the binding sites. Chem Eng J 200:140–148. https://doi.org/10.1016/j.cej.2012.06.023

    Article  CAS  Google Scholar 

  5. Katayev EA, Ustynyuk YA, Sessler JL (2006) Receptors for tetrahedral oxyanions. Coord Chem Rev 250:3004–3037. https://doi.org/10.1016/j.ccr.2006.04.013

    Article  CAS  Google Scholar 

  6. Rai V, Tandon PK, Khatoon S (2014) Effect of chromium on antioxidant potential of Catharanthus roseus varieties and production of their anticancer alkaloids: vincristine and vinblastine. Bio Med Res Int 2014(2014):1–10. https://doi.org/10.1016/j.plantsci.2004.06.016

    Article  CAS  Google Scholar 

  7. Sharma A, Kumar V, Shahzad B, Ramakrishnan M, Sidhu GPS, Bali AS, Handa N, Kapoor D, Yadav P, Khanna K (2019) Photosynthetic response of plants under different abiotic stresses: a review. J Plant Growth Regul 38:1–23. https://doi.org/10.1007/s00344-019-10018-x

    Article  CAS  Google Scholar 

  8. Valko M, Rhodes C, Moncol J, Izakovic M, Mazur M (2006) Free radicals, metals and antioxidants in oxidative stress-induced cancer. Chem Biol Interact 160:1–40. https://doi.org/10.1016/j.cbi.2005.12.009

    Article  CAS  PubMed  Google Scholar 

  9. Hayat S, Khalique G, Irfan M, Wani AS, Tripathi BN, Ahmad A (2012) Physiological changes induced by chromium stress in plants: an overview. Protoplasma 249:599–611. https://doi.org/10.1007/s00709-011-0331-0

    Article  CAS  PubMed  Google Scholar 

  10. Rajendran M, An WH, Li WC, Perumal V, Wu C, Sahi SV, Sarkar SK (2019) Chromium detoxification mechanism induced growth and antioxidant responses in vetiver (Chrysopogon zizanioides (L.) Roberty). J Cent South Univ 26:489–500. https://doi.org/10.1007/s11771-019-4021-y

    Article  CAS  Google Scholar 

  11. Balal RM, Shahid MA, Vincent C, Zotarelli L, Liu G, Mattson NS, Rathinasabapathi B, Martínez-Nicolas JJ, Garcia-Sanchez F (2017) Kinnow mandarin plants grafted on tetraploid rootstocks are more tolerant to Cr-toxicity than those grafted on its diploids one. Environ Exp Bot 140:8–18. https://doi.org/10.1016/j.envexpbot.2017.05.011

    Article  CAS  Google Scholar 

  12. Amin H, Arain BA, Amin F, Surhio MA (2013) Phytotoxicity of chromium on germination, growth and biochemical attributes of Hibiscus esculentus L. Am J Plant Sci 4:720–726 http://www.scirp.org/journal/PaperInformation.aspx?PaperID=41293

    Article  Google Scholar 

  13. Tang J, Xu J, Wu Y, Li Y, Tang Q (2012) Effects of high concentration of chromium stress on physiological and biochemical characters and accumulation of chromium in tea plant (Camellia sinensis. L.). Afr J Biotechnol 11:2248–2255

    CAS  Google Scholar 

  14. Sinha S, Saxena R, Singh S (2005) Chromium induced lipid peroxidation in the plants of Pistia stratiotes L. Role of antioxidants and antioxidant enzymes. Chemosphere 58:595–604

    Article  CAS  PubMed  ADS  Google Scholar 

  15. Rai V, Vajpayee P, Singh SN, Mehrotra S (2004) Effect of chromium accumulation on photosynthetic pigments, oxidative stress defense system, nitrate reduction, proline level and eugenol content of Ocimum tenuiflorum L. Plant Sci 167:1159–1169. https://doi.org/10.1016/j.plantsci.2004.06.016

    Article  CAS  Google Scholar 

  16. Zou J, Yu K, Zhang Z, Jiang W, Liu D (2009) Antioxidant response system and chlorophyll fluorescence in chromium (VI)-treated Zea mays L. seedlings. Acta Biol Crac Ser Bot 51:23–33

    Google Scholar 

  17. Islam F, Yasmeen T, Arif MS, Riaz M, Shahzad SM, Imran Q, Ali I (2016) Combined ability of chromium (Cr) tolerant plant growth promoting bacteria (PGPB) and salicylic acid (SA) in attenuation of chromium stress in maize plants. Plant Physiol Biochem 108:456–467. https://doi.org/10.1016/j.plaphy.2016.08.014

    Article  CAS  PubMed  Google Scholar 

  18. Muslu A, Ergün N (2013) Effects of copper and chromium and high temperature on growth, proline and protein content in wheat seedlings. Bangladesh J Bot 42:105–112. https://doi.org/10.3329/bjb.v42i1.15871

    Article  Google Scholar 

  19. Gupta D, Nicoloso F, Schetinger M, Rossato L, Pereira L, Castro G, Srivastava S, Tripathi R (2009) Antioxidant defense mechanism in hydroponically grown Zea mays seedlings under moderate lead stress. J Hazard Mater 172:479–484. https://doi.org/10.1016/j.jhazmat.2009.06.141

    Article  CAS  PubMed  Google Scholar 

  20. Shahzad B, Tanveer M, Hassan W, Shah AN, Anjum SA, Cheema SA, Ali I (2016) Lithium toxicity in plants: reasons, mechanisms and remediation possibilities—a review. Plant Physiol Biochem 107:104–115. https://doi.org/10.1016/j.plaphy.2016.05.034

    Article  CAS  PubMed  Google Scholar 

  21. Lee S, Moon JS, Ko TS, Petros D, Goldsbrough PB, Korban SS (2003) Overexpression of Arabidopsis phytochelatin synthase paradoxically leads to hypersensitivity to cadmium stress. Plant Physiol 131:656–663. https://doi.org/10.1104/pp.014118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Ullah A, Shahzad B, Tanveer M, Nadeem F, Sharma A, Lee DJ, Rehman A (2019) Abiotic stress tolerance in plants through pre-sowing seed treatments with mineral elements and growth regulators. In: Hasanuzzaman M, Fotopoulos V (eds) Priming and pretreatment of seeds and seedlings: implication in plant stress tolerance and enhancing productivity in crop plants. Springer, Singapore, pp 427–445

    Chapter  Google Scholar 

  23. Sedman RM, Beaumont J, McDonald TA, Reynolds S, Krowech G, Howd R (2006) Review of the evidence regarding the carcinogenicity of hexavalent chromium in drinking water. J Environ Sci Health C Environ Carcinog Ecotoxicol Rev 24:155–182. https://doi.org/10.1080/10590500600614337

    Article  CAS  PubMed  Google Scholar 

  24. Dayan AD, Paine AJ (2001) Mechanisms of chromium toxicity, carcinogenicity and allergenicity: review of the literature from 1985 to 2000. Human Exp Toxicol 20(9):439–451

    Article  CAS  Google Scholar 

  25. Sugiyama M (1991) Effects of vitamins on chromium(VI)-induced damage. Environ Health Perspect 92:63–70

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Sugiyama M (1989) Effects of vitamin E and vitamin B2 on chromate-induced DNA lesions. Biol Trace Elem Res 2:399–404. https://doi.org/10.1007/BF02917281

    Article  Google Scholar 

  27. Yao H, Guo L, Jiang BH, Luo J, Shi X (2008) Oxidative stress and chromium (VI) carcinogenesis. J Environ Pathol Toxicol Oncol 27(2):77–88. https://doi.org/10.1615/JEnvironPatholToxicolOncol.v27.i2.10

    Article  CAS  PubMed  Google Scholar 

  28. Asatiani N, Sapojnikova N, Abuladze M, Kartvelishvili T, Kulikova N, Kiziria E, Namchevadze E, Holman HY (2009) effects of Cr(VI) long-term and low dose action on mammalian antioxidant enzymes (an in vitro study). J Inorg Biochem 98:490–496

    Article  Google Scholar 

  29. Shi X, Chiu A, Chen CT, Halliwell B, Castranova V, Vallyathan V (1999) Reduction of chromium(VI) and its relationship to carcinogenesis. J Toxicol Environ Health B Crit Rev 2:87–104. https://doi.org/10.1080/109374099281241

    Article  CAS  PubMed  Google Scholar 

  30. Bagchi D, Bagchi M, Stohs SJ (2001) Chromium (VI)-induced oxidative stress, apoptotic cell death and modulation of p53 tumor suppressor gene. Mol Cell Biochem 222:149–158

    Article  CAS  PubMed  Google Scholar 

  31. Martin BD, Schoenhard JA, Sugden KD (1998) Hypervalent chromium mimics reactive oxygen species as measured by the oxidant-sensitive dyes 2,7- dichlorofluorescin and dihydrorhodamine. Chem Res Toxicol 11:1402–1410. https://doi.org/10.1021/tx9801559

    Article  CAS  PubMed  Google Scholar 

  32. Messer J, Reynolds M, Stoddard L (2006) Zhitkovich A (2006) Causes of DNA single-strand breaks during reduction of chromate by glutathione in vitro and in cells. Free Radic Biol Med 40:1981–1992. https://doi.org/10.1016/j.freeradbiomed.2006.01.028

    Article  CAS  PubMed  Google Scholar 

  33. DeLoughery Z, Luczak MW, Ortega-Atienza S, Zhitkovich A (2015) DNA double-strand breaks by Cr(VI) are targeted to euchromatin and cause ATR-dependent phosphorylation of histone H2AX and its ubiquitination. Toxicol Sci 143:54–63. https://doi.org/10.1093/toxsci/kfu207

    Article  CAS  PubMed  Google Scholar 

  34. Vimercati L, Gatti MF, Gagliardi T, Cuccaro F, De Maria L, Caputi A, Quarato M, Baldassarre A (2017) Environmental exposure to arsenic and chromium in an industrial area. Environ Sci Pollut Res 24:11528–11535. https://doi.org/10.1007/s11356-017-8827-6

    Article  CAS  Google Scholar 

  35. Fu F, Wang Q (2011) Removal of heavy metal ions from wastewaters: a review. J Environ Manag 92(3):407–418. https://doi.org/10.1016/j.jenvman.2010.11.011

    Article  CAS  Google Scholar 

  36. Raval NP, Shah PU, Ladha DG, Wadhwani PM, Shah NK (2016) Comparative study of chitin and chitosan beads for the adsorption of hazardous anionic azo dye Congo Red from wastewater. Desalination Water Treat 57(20):9247–9262. https://doi.org/10.1080/19443994.2015.1027959

    Article  CAS  Google Scholar 

  37. Nartey Obemah D, Zhao B (2014) Biochar preparation, characterization, and adsorptive capacity and its effect on bioavailability of contaminants: an overview. Adv Mater Sci Eng 2014:715398. https://doi.org/10.1155/2014/715398

    Article  Google Scholar 

  38. Lehmann J, Joseph S (eds) (2009) Biochar for environmental management: science and technology. Earthscan, London, pp 207–226

    Google Scholar 

  39. Lehmann JS (ed) (2009) Biochar for environmental management: science and technology. Earthscan, London, pp 33–52

    Google Scholar 

  40. Shackley S, Carter S, Knowles T, Middelink E, Haefele S, Haszeldine S (2012) Sustainable gasification–biochar systems? A case-study of rice-husk gasification in Cambodia, Part II: Field trial results, carbon abatement, economic assessment and conclusions. Energy Policy 41:618–623. https://doi.org/10.1016/j.enpol.2011.11.023

    Article  CAS  Google Scholar 

  41. Verheijen F, Jeffery S, Bastos AC, van der Velde M, Diafas I (2010) Biochar application to soils. A critical scientific review of effects on soil properties, processes and functions. EUR 24099:162

    Google Scholar 

  42. Vaughn SF, Kenar JA, Thompson AR, Peterson SC (2013) Comparison of biochars derived from wood pellets and pelletized wheat straw as replacements for peat in potting substrates. Ind Crops Prod 51:437–443. https://doi.org/10.1016/j.indcrop.2013.10.010

    Article  CAS  Google Scholar 

  43. Qian K, Kumar A, Zhang H, Bellmer D, Huhnke R (2015) Recent advances in utilization of biochar. Ren Sustain Energy Rev 42:1055–1064. https://doi.org/10.1016/j.rser.2014.10.074

    Article  CAS  Google Scholar 

  44. Mohan D, Kumar H, Sarswat A, Alexandre-Franco M, Pittman CU Jr (2014) Cadmium and lead remediation using magnetic oak wood and oak bark fast pyrolysis bio-chars. Chem Eng J 236:513–528. https://doi.org/10.1016/j.cej.2013.09.057

    Article  CAS  Google Scholar 

  45. Lee J, Kim KH, Kwon EE (2017) Biochar as a catalyst, Ren Sustain. Energy Rev 77:70–79. https://doi.org/10.1016/j.rser.2017.04.002

    Article  CAS  Google Scholar 

  46. Gu X, Wang Y, Lai C, Qiu J, Li S, Hou Y, Martens W, Mahmood N, Zhang S (2015) Microporous bamboo biochar for lithium-sulfur batteries. Nano Res 8:129–139. https://doi.org/10.1007/s12274-014-0601-1

    Article  CAS  Google Scholar 

  47. Neves D, Thunman H, Matos A, Tarelho L, Gómez-Barea A (2011) Characterization and prediction of biomass pyrolysis products. Progress Energy Combus Sci 37:611–630. https://doi.org/10.1016/j.pecs.2011.01.001

    Article  CAS  Google Scholar 

  48. Kumar A, Jones D, Hanna M (2009) Thermochemical biomass gasification: a review of the current status of the technology. Energies 2:556–581

    Article  CAS  Google Scholar 

  49. Meyer S, Glaser B, Quicker P (2011) Technical, economical, and climate-related aspects of biochar production technologies: a literature review. Environ Sci Technol 45:9473–9483. https://doi.org/10.1021/es201792c

    Article  CAS  PubMed  ADS  Google Scholar 

  50. Qian K, Kumar A, Patil K, Bellmer D, Wang D, Yuan W, Raymond LH (2013) Effects of biomass feedstocks and gasification conditions on the physiochemical properties of char. Energies 6:3972–3986. https://doi.org/10.3390/en6083972

    Article  CAS  Google Scholar 

  51. Quitain AT, Faisal M, Kang K, Daimon H, Fujie K (2002) Low-molecular-weight carboxylic acids produced from hydrothermal treatment of organic wastes. J Hazard Mater 93:209–220

    Article  CAS  PubMed  Google Scholar 

  52. Wang YM, Chen TC, Yeh KJ, Shue MF (2001) Stabilization of an elevated heavy metal contaminated site. J Hazard Mater 88:63. https://doi.org/10.1016/S0304-3894(01)00289-8

    Article  CAS  PubMed  Google Scholar 

  53. Hirose T, Fujino T, Fan T, Endo HT, Okabe M (2002) Yoshimura, Effect of carbonization temperature on the structural changes of wood ceramics impregnated with liquefied wood. Carbon 40:761–765

    Article  CAS  Google Scholar 

  54. Sevilla M, Fuertes AB (2009) The production of carbon materials by hydrothermal carbonization of cellulose. Carbon 47:2281–2289

    Article  CAS  Google Scholar 

  55. Wiedner K, Rumpel C, Steiner C, Pozzi A, Maas R, Glaser B (2010) Chemical evaluation of chars produced by thermochemical conversion (gasification, pyrolysis and hydrothermal carbonization) of agro-industrial biomass on a commercial scale. Biomass Bioenergy 59(2013):264–278

    Google Scholar 

  56. Kim JH, Lee D, Bae TS, Lee YS (2015) The electrochemical enzymatic glucose biosensor based on mesoporous carbon fibers activated by potassium carbonate. J Indust Eng Chem 25:192–198. https://doi.org/10.1016/j.jiec.2014.10.034

    Article  CAS  Google Scholar 

  57. Yu KL, Lau BF, Show PL, Ong HC, Ling TC, Chen WH, Ng EP, Chang JS (2017) Recent developments on algal biochar production and characterization. Bioresour Technol 246:2–11. https://doi.org/10.1016/j.biortech.2017.08.009

    Article  CAS  PubMed  Google Scholar 

  58. Zhao L, Zheng W, Mašek O, Chen X, Gu B, Sharma BK, Cao X (2017) Roles of phosphoric acid in biochar formation: synchronously improving carbon retention and sorption capacity. J Environ Quality 46:393. https://doi.org/10.2134/jeq2016.09.0344

    Article  CAS  Google Scholar 

  59. Fu D, Chen Z, Xia D, Shen L, Wang Y, Li Q (2017) A novel solid digestate-derived biochar-Cu NP composite activating H2O2 system for simultaneous adsorption and degradation of tetracycline. Environ Poll 221:301–310. https://doi.org/10.1016/j.envpol.2016.11.078

    Article  CAS  Google Scholar 

  60. Kołodynska D, Krukowska J, Thomas P (2017) Comparison of sorption and desorption studies of heavy metal ions from biochar and commercial active carbon. Chem Eng J 307:353–363. https://doi.org/10.1016/j.cej.2016.08.088

    Article  CAS  Google Scholar 

  61. Ho PH, Lee SY, Lee D, Woo HC (2014) Selective adsorption of tert-butyl mercaptan and tetrahydrothiophene on modified activated carbons for fuel processing in fuel cell applications. Int J Hydrogen Energy 39:6737–6745. https://doi.org/10.1016/j.ijhydene.2014.02.011

    Article  CAS  Google Scholar 

  62. Zhang QP, Liu QC, Li B, Yang L, Wang CQ, Li YD, Xiao R (2017) Adsorption of Cd(II) from aqueous solutions by rape straw biochar derived from different modification processes. Chemosphere 175:332–340

    Article  PubMed  ADS  Google Scholar 

  63. Li L, Liu S, Liu J (2011) Surface modification of coconut shell based activated carbon for the improvement of hydrophobic VOC removal. J Hazard Mater 192:683–690. https://doi.org/10.1016/j.jhazmat.2011.05.069

    Article  CAS  PubMed  Google Scholar 

  64. Sizmur T, Fresno T, Akgül G, Frost H, Jiménez EM (2017) Biochar modification to enhance sorption of inorganics from water. Bioresour Technol 246:34–47. https://doi.org/10.1016/j.biortech.2017.07.082

    Article  CAS  PubMed  Google Scholar 

  65. Pouretedal H, Sadegh N (2014) Effective removal of amoxicillin, cephalexin, tetracycline and penicillin G from aqueous solutions using activated carbon nanoparticles prepared from vine wood. J Process Eng 1:64–73. https://doi.org/10.1016/j.jwpe.2014.03.006

    Article  Google Scholar 

  66. Angın D, Altintig E, Köse TE (2013) Influence of process parameters on the surface and chemical properties of activated carbon obtained from biochar by chemical activation. Bioresour Technol 148:542–549. https://doi.org/10.1016/j.biortech.2013.08.164

    Article  CAS  PubMed  Google Scholar 

  67. Yin Z, Liu Y, Liu S, Jiang L, Tan X, Zeng G, Li M, Liu S, Tian S, Fang Y (2018) Activated magnetic biocharbyone-stepsynthesis: enhanced adsorption and co adsorption for17β-estradiolandcopper. Sci Total Environ 639:1530–1542. https://doi.org/10.1016/j.scitotenv.2018.05.130

    Article  CAS  PubMed  ADS  Google Scholar 

  68. Wu J, Ren DJ, Zhang XQ, Chen ZH, Zhang SQ, Li S, Fu L (2019) The adsorption properties of biochar derived from woody plants or bamboo for cadmium in aqueous solution. Desalinat Water Treat 160:268–275. https://doi.org/10.1007/s13762-013-0291-3

    Article  CAS  Google Scholar 

  69. Li R, Wang JJ, Zhou B, Awasthi MK, Ali A, Zhang Z, Gaston LA, Lahori AH, Mahar A (2016) Enhancing phosphate adsorption by Mg/Al layered double hydroxide functionalized biochar with different Mg/Al ratios. Sci Total Environ 559:121–129. https://doi.org/10.1016/j.scitotenv.2016.03.151

    Article  CAS  PubMed  ADS  Google Scholar 

  70. Lyu H, Tang J, Huang Y, Gai L, Zeng EY, Liber K, Gong Y (2017) Removal of hexavalent chromium from aqueous solutions by a novel biochar supported nanoscale iron sulfide composite. Chem Eng J 322:516–524. https://doi.org/10.1016/j.cej.2017.04.058

    Article  CAS  Google Scholar 

  71. Wang M, Wang JJ, Wang X (2018) Effect of KOH-enhanced biochar on increasing soil plant-available silicon. Geoderma 321:22–31. https://doi.org/10.1016/j.geoderma.2018.02.001

    Article  CAS  ADS  Google Scholar 

  72. Jimenez-Cordero D, Heras F, Alonso-Morales N, Gilarranz MA, Rodriguez JJ (2015) Ozone as oxidation agent in cyclic activation of biochar. Fuel Process Technol 139:42–48. https://doi.org/10.1016/j.fuproc.2015.08.016

    Article  CAS  Google Scholar 

  73. Bird MI, Charville-Mort PD, Ascough PL, Wood R, Higham T, Apperley D (2010) Assessment of oxygen plasma ashing as a pre-treatment for radiocarbon dating. Quat Geochronol 5:435–442. https://doi.org/10.1016/j.quageo.2009.10.004

    Article  Google Scholar 

  74. Wu GQ, Zhang X, Hui H, Yan J, Zhang QS, Wan JL, Dai Y (2012) Adsorptive removal of aniline from aqueous solution by oxygen plasma irradiated bamboo based activated carbon. Chem Eng J 185:201–210. https://doi.org/10.1016/j.cej.2012.01.084

    Article  CAS  Google Scholar 

  75. Tendero C, Tixier C, Tristant P, Desmaison J, Leprince P (2006) Atmospheric pressure plasmas: a review. Spectrochim Acta B Atomic Spectrosc 61:2–30. https://doi.org/10.1016/j.sab.2005.10.003

    Article  CAS  ADS  Google Scholar 

  76. Yi Y, Tu G, Zhao D, Tsang PE, Fang Z (2020) Key role of FeO in the reduction of Cr (VI) by magnetic biochar synthesised using steel pickling waste liquor and sugarcane bagasse. J Clean Prod 245:118886. https://doi.org/10.1016/j.jclepro.2019.118886

    Article  CAS  Google Scholar 

  77. Zhuang LZ, Li QH, Chen JS, Ma BB, Chen SX (2014) Carbothermal preparation of porous carbon-encapsulated iron composite for the removal of trace hexavalent chromium. Chem Eng J 253:24–33

    Article  CAS  Google Scholar 

  78. Duan S, Ma W, Pan Y, Meng FQ, Yu SG, Wu L (2017) Synthesis of magnetic biochar from iron sludge for the enhancement of Cr (VI) removal from solution. J Taiwan Inst Chem E 80:835–841

    Article  CAS  Google Scholar 

  79. Zhu Y, Dai W, Deng K, Pan T, Guan Z (2020) Efficient removal of Cr (VI) from aqueous solution by Fe-Mn oxide-modified biochar. Water Air Soil Poll 231(2):1–17. https://doi.org/10.1007/s11270-020-4432-2

    Article  CAS  Google Scholar 

  80. Kumar R, Bishnoi NR, Garima Bishnoi K (2008) Biosorption of chromium(VI) from aqueous solution and electroplating wastewater using fungal biomass. Chem Eng J 135:202–208

    Article  CAS  Google Scholar 

  81. Zhang QC, Wang CC, Cheng JH, Zhang CL, Yao JJ (2021) Removal of Cr (VI) by biochar derived from six kinds of garden wastes: isotherms and kinetics. Materials 14(12):3243. https://doi.org/10.3390/ma14123243

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  82. Wang J, Guo X (2020) Adsorption kinetic models: physical meanings, applications, and solving methods. J Hazard Mater 390:122156

    Article  CAS  PubMed  Google Scholar 

  83. Ma Y, Liu WJ, Zhang N, Li YS, Jiang H, Sheng GP (2014) Polyethylenimine modified biochar adsorbent for hexavalent chromium removal from the aqueous solution. Bioresour Technol 169:403–408. https://doi.org/10.1016/j.biortech.2014.07.014

    Article  CAS  PubMed  Google Scholar 

  84. Jian X, Li S, Feng Y, Chen X, Kuang R, Li B, Sun Y (2020) Influence of synthesis methods on the high-efficiency removal of Cr (VI) from aqueous solution by Fe-modified magnetic biochars. ACS Omega 5(48):31234–31243. https://doi.org/10.1021/acsomega.0c04616

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Ma R, Yan X, Pu X, Fu X, Bai L, Du Y, Cheng M, Qian J (2021) An exploratory study on the aqueous Cr (VI) removal by the sulfate reducing sludge-based biochar. Sep Purif Technol 276:119314. https://doi.org/10.1016/j.seppur.2021.119314

    Article  CAS  Google Scholar 

  86. Dong FX, Yan L, Zho XH, Huang ST, Liang JY, Zhang WX, Guo ZW, Guo PR, Qian W, Kong LJ, Chu W (2021) Simultaneous adsorption of Cr (VI) and phenol by biochar-based iron oxide composites in water: performance, kinetics and mechanism. J Hazard Mater 416:125930. https://doi.org/10.1016/j.jhazmat.2021.125930

    Article  CAS  PubMed  Google Scholar 

  87. Liu Y, Sohi SP, Liu S, Guan J, Zhou J, Chen J (2019) Adsorption and reductive degradation of Cr (VI) and TCE by a simply synthesized zero valent iron magnetic biochar. J. Environ Manag 235:276–281. https://doi.org/10.1016/j.jenvman.2019.01.045

    Article  CAS  Google Scholar 

  88. Jia X, Zhang Y, He Z, Chang F, Zhang H, Wågberg T, Hu G (2021) Mesopore-rich badam-shell biochar for efficient adsorption of Cr (VI) from aqueous solution. J Environ Chem Eng 9(4):105634. https://doi.org/10.1016/j.jece.2021.105634

    Article  CAS  Google Scholar 

  89. Huang X, Liu Y, Liu S, Tan X, Ding Y, Zeng G, Zhou Y, Zhang M, Wang S, Zheng B (2016) Effective removal of Cr (VI) using β-cyclodextrin–chitosan modified biochars with adsorption/reduction bifuctional roles. RSC Adv 6(1):94–104. https://doi.org/10.1039/C5RA22886G

    Article  CAS  ADS  Google Scholar 

  90. Qu J, Wang S, Jin L, Liu Y, Yin R, Jiang Z, Tao Y, Huang J, Zhang Y (2021) Magnetic porous biochar with high specific surface area derived from microwave-assisted hydrothermal and pyrolysis treatments of water hyacinth for Cr(VI) and tetracycline adsorption from water. Bioresour Technol 340:125692. https://doi.org/10.1016/j.biortech.2021.125692

    Article  CAS  PubMed  Google Scholar 

  91. Jiang L, Liu S, Liu Y, Zeng G, Guo Y, Yin Y et al (2017) Enhanced adsorption of hexavalent chromium by a biochar derived from ramie biomass (Boehmeria nivea (L.) Gaud.) modified with β-cyclodextrin/poly (L-glutamic acid). Environ Sci Poll Res 24(30):23528–23537. https://doi.org/10.1007/s11356-017-9833-4

    Article  CAS  Google Scholar 

  92. Herath A, Reid C, Perez F, Pittman CU Jr, Mlsna TE (2021) Biochar-supported polyaniline hybrid for aqueous chromium and nitrate adsorption. J Environ Manag 296:113186. https://doi.org/10.1016/j.jenvman.2021.113186

    Article  CAS  Google Scholar 

  93. Zhang S, Lyu H, Tang J, Song B, Zhen M, Liu X (2019) A novel biochar supported CMC stabilized nano zero-valent iron composite for hexavalent chromium removal from water. Chemosphere 217:686–694. https://doi.org/10.1016/j.chemosphere.2018.11.040

    Article  CAS  PubMed  ADS  Google Scholar 

  94. Gao J, Yang L, Liu Y, Shao F, Liao Q, Shang J (2018) Scavenging of Cr(VI) from aqueous solutions by sulfide-modified nanoscale zero-valent iron supported by biochar. J Taiwan Institute Chem Eng. https://doi.org/10.1016/j.jtice.2018.06.033

    Article  Google Scholar 

  95. Zhang XN, Mao GY, Jiao YB, Shang Y, Han RP (2014) Adsorption of anionic dye on magnesium hydroxide-coated pyrolytic bio-char and reuse by microwave irradiation. Int J Environ Sci Technol 11(5):1439–1448. https://doi.org/10.1007/s13762-013-0338-5

    Article  CAS  Google Scholar 

  96. Qu J, Wang Y, Tian X, Jiang Z, Deng F, Tao Y, Jiang Q, Wang L, Zhang Y (2021) KOH-activated porous biochar with high specific surface area for adsorptive removal of chromium (VI) and naphthalene from water: Affecting factors, mechanisms and reusability exploration. J Hazard Mater 401:123292. https://doi.org/10.1016/j.jhazmat.2020.123292

    Article  CAS  PubMed  Google Scholar 

  97. Sun S, Zeng X, Gao Y, Zhang W, Zhou L, Zeng X, Liu W, Jiang Q, Jiang C, Wang S (2021) Iron oxide loaded biochar/attapulgite composites derived camellia oleifera shells as a novel bio-adsorbent for highly efficient removal of Cr (VI). J Clean Prod 317:128412. https://doi.org/10.1016/j.jclepro.2021.128412

    Article  CAS  Google Scholar 

  98. Yang Y, Zhang Y, Wang G, Yang Z, Xian J, Yang Y, Li T, Pu Y, Jia Y, Li Y, Cheng Z (2021) Adsorption and reduction of Cr (VI) by a novel nanoscale FeS/chitosan/biochar composite from aqueous solution. J Environ Chem Eng 9(4):105407. https://doi.org/10.1016/j.jece.2021.105407

    Article  CAS  Google Scholar 

  99. Chen XL, Li F, Xie XJ, Li Z, Chen L (2019) Nanoscale zero-valent iron and chitosan functionalized Eichhornia crassipes biochar for efficient hexavalent chromium removal. Int J Environ Res Public health 16(17):3046. https://doi.org/10.3390/ijerph16173046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Yi Y, Tu G, Zhao D, Tsang PE, Fang Z (2020) Key role of FeO in the reduction of Cr (VI) by magnetic biochar synthesised using steel pickling waste liquor and sugarcane bagasse. J Clean Prod 245:118886. https://doi.org/10.1016/j.jclepro.2019.118886

    Article  CAS  Google Scholar 

  101. Payel S, Hasan HMA, MA, (2021) Recycling biochar derived from tannery liming sludge for chromium adsorption in static and dynamic conditions. Environ Technol Innov 24:102010. https://doi.org/10.1016/j.plantsci.2004.06.016

    Article  CAS  Google Scholar 

  102. Xiao R, Wang JJ, Li R, Park J, Meng Y, Zhou B et al (2018) Enhanced sorption of hexavalent chromium [Cr(VI)] from aqueous solutions by diluted sulfuric acid-assisted MgO-coated biochar composite. Chemosphere 208:408–416. https://doi.org/10.1016/j.chemosphere.2018.05Wei

    Article  CAS  PubMed  ADS  Google Scholar 

  103. Xin O, Yitong H, Xi C, Jiawei C (2017) Magnetic biochar combining adsorption and separation recycle for removal of chromium in aqueous solution. Water Sci Technol 75(5):1177–1184. https://doi.org/10.2166/wst.2016.610

    Article  CAS  PubMed  Google Scholar 

  104. Zhu S, Huang X, Wang D, Wang L, Ma F (2018) Enhanced hexavalent chromium removal performance and stabilization by magnetic iron nanoparticles assisted biochar in aqueous solution: mechanisms and application potential. Chemosphere 207:50–59. https://doi.org/10.1016/j.chemosphere.2018.05

    Article  CAS  PubMed  ADS  Google Scholar 

  105. Bai L, Su X, Feng J, Ma S (2021) Preparation of sugarcane bagasse biochar/nano-iron oxide composite and mechanism of its Cr (VI) adsorption in water. J Clean Prod 320:128723. https://doi.org/10.1016/j.jclepro.2021.128723

    Article  CAS  Google Scholar 

  106. Zou H, Zhao J, He F, Zhong Z, Huang J, Zheng Y, Zhang Y, Yang Y, Yu F, Bashir MA, Gao B (2021) Ball milling biochar iron oxide composites for the removal of chromium (Cr (VI)) from water: performance and mechanisms. J Hazard Mater 413:125252. https://doi.org/10.1016/j.jhazmat.2021.125252

    Article  CAS  PubMed  Google Scholar 

  107. Gan C, Liu Y, Tan X, Wang S, Zeng G, Zheng B, Li T, Jiang Z, Liu W (2015) Effect of porous zinc–biochar nanocomposites on Cr (VI) adsorption from aqueous solution. RSC Advanc 5(44):35107–35115. https://doi.org/10.1039/C5RA04416B

    Article  CAS  ADS  Google Scholar 

  108. Yu J, Jiang C, Guan Q, Ning P, Gu J, Chen Q, Zhang J, Miao R (2018) Enhanced removal of Cr (VI) from aqueous solution by supported ZnO nanoparticles on biochar derived from waste water hyacinth. Chemosphere 195:632–640. https://doi.org/10.1016/j.chemosphere.2017.12.128

    Article  CAS  PubMed  ADS  Google Scholar 

  109. Zhao N, Yin Z, Liu F, Zhang M, Lv Y, Hao Z, Pan G, Zhang J (2018) Environmentally persistent free radicals mediated removal of Cr(VI) from highly saline water by corn straw biochars. Bioresour Technol 260:294–301. https://doi.org/10.1016/j.biortech.2018.03.116

    Article  CAS  PubMed  Google Scholar 

  110. Deng J, Li X, Wei X, Liu Y, Liang J, Shao Y, Huang W, Cheng X (2020) Different adsorption behaviors and mechanisms of a novel amino-functionalized hydrothermal biochar for hexavalent chromium and pentavalent antimony. Bioresour Technol 310:123438. https://doi.org/10.1016/j.biortech.2020.123438

    Article  CAS  PubMed  Google Scholar 

  111. Wang X, Xu J, Liu J, Liu J, Xia F, Wang C, Dahlgren RA, Liu W (2020) Mechanism of Cr (VI) removal by magnetic greigite/biochar composites. Sci Total Environ 700:134414. https://doi.org/10.1016/j.scitotenv.2019.134414

    Article  CAS  PubMed  ADS  Google Scholar 

  112. Zhao C, Hu L, Zhang C, Wang S, Wang X, Huo Z (2021) Preparation of biochar-interpenetrated iron-alginate hydrogel as a pH-independent sorbent for removal of Cr (VI) and Pb (II). Environ Poll 287:117303. https://doi.org/10.1016/j.envpol.2021.117303

    Article  CAS  Google Scholar 

  113. Zhou Y, Liu G, Liu J, Xiao Y, Wang T, Xue Y (2021) Magnetic biochar prepared by electromagnetic induction pyrolysis of cellulose: biochar characterization, mechanism of magnetization and adsorption removal of chromium (VI) from aqueous solution. Bioresour Technol 337:125429. https://doi.org/10.1016/j.biortech.2021.125429

    Article  CAS  PubMed  Google Scholar 

  114. Liu N, Zhang Y, Xu C, Liu P, Lv J, Liu Y, Wang Q (2020) Removal mechanisms of aqueous Cr (VI) using apple wood biochar: a spectroscopic study. J Hazard Mater 384:121371. https://doi.org/10.1016/j.jhazmat.2019.121371

    Article  CAS  PubMed  Google Scholar 

  115. Zhang X, Fu W, Yin Y, Chen Z, Qiu R, Simonnot MO, Wang X (2018) Adsorption-reduction removal of Cr (VI) by tobacco petiole pyrolytic biochar: batch experiment, kinetic and mechanism studies. Bioresour Technol 268:149–157. https://doi.org/10.1016/j.biortech.2018.07.125

    Article  CAS  PubMed  Google Scholar 

  116. Xiao R, Wang JJ, Li R, Park J, Meng Y, Zhou B et al (2018) Enhanced sorption of hexavalent chromium [Cr (VI)] from aqueous solutions by diluted sulfuric acid-assisted MgO-coated biochar composite. Chemosphere 208:408–416. https://doi.org/10.1016/j.chemosphere.2018.05.175

    Article  CAS  PubMed  ADS  Google Scholar 

  117. Guo N, Lv X, Yang Q, Xu X, Song H (2021) Effective removal of hexavalent chromium from aqueous solution by ZnCl2 modified biochar: effects and response sequence of the functional groups. J Mol Liquid 334:116149. https://doi.org/10.1016/j.molliq.2021.116149

    Article  CAS  Google Scholar 

  118. Ozer C, Boysan F, Imamoglu M, Yildiz SZ (2016) Enhanced adsorption of hexavalent chromium ions on polyamine polyurea polymer: isotherm, kinetic, thermodynamic studies and batch processing design. J Dispersion Sci Technol 37(6):860–865. https://doi.org/10.1080/01932691.2015.1066258

    Article  CAS  Google Scholar 

  119. Tejada-Tovar C, Villabona-Ortíz A, Ortega-Toro R (2021) Batch and packed bed column study for the removal of Cr (VI) and Ni (II) using agro-industrial wastes. Appl Sci 11(19):9355

    Article  CAS  Google Scholar 

  120. Amirnia S, Ray MB, Margaritis A (2016) Copper ion removal by Acer saccharum leaves in a regenerable continuous-flow column. Chem Eng J 287:755–764

    Article  CAS  Google Scholar 

  121. Yakout S, Hassan M, Omar H (2019) Fixed-bed column study for the removal of hexavalent chromium ions from aqueous solutions via pyrolysis of the rice husk. Desalin Water Treat 170:128–137

    Article  CAS  Google Scholar 

  122. Wang SY, Tang YK, Chen C, Wu JT, Huang Z, Mo YY, Zhan KX, Chen JB (2015) Regeneration of magnetic biochar derived from eucalyptus leaf residue for lead (II) removal. Bioresour Technol 186:360–364. https://doi.org/10.1016/j.biortech.2015.03.139

    Article  CAS  PubMed  Google Scholar 

  123. Shang J, He W, Fan C (2015) Adsorption of dimethyl trisulfide from aqueous solution on a low-cost adsorbent: thermally activated pinecone. Chin J Oceanol Limnol 33(1):169–175. https://doi.org/10.1007/s00343-015-4085-y

    Article  CAS  Google Scholar 

  124. Gupta VK, Ali I (2013) Environmental water: advances in treatment, remediation and recycling. Newnes

    Google Scholar 

  125. Godwin PM, Pan Y, Xiao H, Afzal MT (2019) Progress in preparation and application of modified biochar for improving heavy metal ion removal from wastewater. J Bioresour Bioprod 4(1):31–42. https://doi.org/10.21967/jbb.v4i1.180

    Article  CAS  Google Scholar 

  126. Qiao K, Tian W, Bai J, Zhao J, Du Z, Song T et al (2020) Synthesis of floatable magnetic iron/biochar beads for the removal of chromium from aqueous solutions. Environ Technol Innov 19:100907. https://doi.org/10.1016/j.eti.2020.100907

    Article  Google Scholar 

  127. Shang MR, Liu YG, Liu SB, Zeng GM, Tan XF, Jiang LH (2016) A novel graphene oxide coated biochar composite: synthesis, characterization and application for Cr (VI) removal. RSC Adv 6(88):85202–85212. https://doi.org/10.1039/C6RA07151A

    Article  CAS  ADS  Google Scholar 

  128. Shi S, Yang J, Liang S, Li M, Gan Q, Xiao K, Hu J (2018) Enhanced Cr (VI) removal from acidic solutions using biochar modified by Fe3O4@ SiO2-NH2 particles. Sci Total Environ 628:499–508. https://doi.org/10.1016/j.scitotenv.2018.02.091

    Article  CAS  PubMed  ADS  Google Scholar 

  129. Shakoor MB, Ali S, Rizwan M, Abbas F, Bibi I, Riaz M, Khalil U, Niazi NK, Rinklebe J (2020) A review of biochar-based sorbents for separation of heavy metals from water. Int J Phytoremediation 22(2):111–126. https://doi.org/10.1080/15226514.2019.1647405

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jyotsna Kaushal.

Ethics declarations

Ethics approval and consent to participate

Not applicable, as research does not report on or involve the use of any animal or human data or tissue.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rani, L., Kaushal, J. & Lal Srivastav, A. Biochar as sustainable adsorbents for chromium ion removal from aqueous environment: a review. Biomass Conv. Bioref. 14, 6083–6096 (2024). https://doi.org/10.1007/s13399-022-02784-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13399-022-02784-8

Keywords

Navigation