Skip to main content
Log in

New reactions of betulin with sulfamic acid and ammonium sulfamate in the presence of solid catalysts

  • Original Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

Betulin is a biologically active triterpenoid substance, which can be isolated from birch bark. We report on a new approach to the synthesis of betulin sulfamate with sulfamic acid and ammonium sulfamate in the presence of solid catalysts, including Amberlyst 15® and Sibunit (granules) oxidized at 500 °C, Sibunit (powder) oxidized at 400 °C, Sibunit-sulfated, TiO2, and ɣ-Al2O3. It is shown that the synthesis with both sulfamic acid and ammonium sulfamate in the presence of an Amberlyst 15® catalyst yields sulfur derivatives of betulin. This catalyst has been proven to remain active at the repeated (up to four cycles) use. A reaction scheme for the catalytic production of sulfur derivatives of betulin is proposed. The obtained sulfur derivatives of betulin have been examined by Fourier transform infrared and ultraviolet visible spectroscopy, scanning electron and optical microscopy, X-ray diffractometry, thermogravimetric analysis, differential scanning calorimetry, and elemental analysis. It has been found by Fourier transform infrared spectroscopy that the use of sulfamic acid with an Amberlyst 15® catalyst ensures the formation of betulin sulfates, while when using ammonium sulfamate with the same catalyst, the sulfate and other betulin derivatives are obtained along with sulfates. It has been established from the X-ray diffractometry data that sulfation of betulin causes its stronger amorphization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

N/A.

Code availability

N/A.

References

  1. Gallezot P (2012) Conversion of biomass to selected chemical products. Chem Soc Rev 41(4):1538–1558

    Article  Google Scholar 

  2. Zhao X, Zhou H, Sikarwar VS, Zhao M, Park A-HA, Fennell P, Shen L, Fan L-S (2017) Biomass-based chemical looping technologies: the good, the bad and the future. Energy & Env Sci 10(9):1885–1910

    Article  Google Scholar 

  3. G.A. Tolstikov, O.B. Flechter. Betulin and its derivatives. Chemistry and biological activity. Chem. Sust. Develop. 13 (2005) 1–30. (in Rus.)

  4. Vasilenko YuK, Semenchenko VF, Frolov LM (2010) Pharmacological properties of birch bark triterpenoids. Exp Clin Pharm 56(4):53–55 ((in Rus.))

    Google Scholar 

  5. Kuznetsova SA, Shakhtshneider TP, Mikhailenko MA, Malyar YuN, Kichkailo AS, Drebushchak VA, Kuznetsov BN (2022) Preparation and antitumor activity of betulin dipropionate and its composites: a minireview. Bioint Res Appl Chem 12(5):6873–6894

    Google Scholar 

  6. Pohilo ND, Denisenko VA, Baranov VI (2010) Triterpenoids of the outer cortex of Betula maximowicziana. Chem nat conp 2:650–651 ((in Rus.))

    Google Scholar 

  7. Flekhter OB, Nigmatulina LR, Baltina LA, Karachurina LT, Galin FZ (2011) Synthesis of lupane group triterpenoid esters and their hepatoprotective activity. Bioorg Chem 26(3):543–550 ((in Rus.))

    Google Scholar 

  8. Lavois S (2001) Synthesis of betulin derivatives with solid supported reagents. Synth Commun 10:1565–1571

    Article  Google Scholar 

  9. Bureeva S, Andia-Pravdiva J, Symon A, Bichucher A, Moskaleva V, Popenko V, Shpak A, Shvets V, Kozlov L, Kaplun A (2007) Selective inhibition of the interaction of C1q with immunoglobulins and the classical pathway of complement activation by steroids and triterpenoids sulfates. Bioorg Med Chem 15:3489–3498. https://doi.org/10.1016/j.bmc.2007.03.002

    Article  Google Scholar 

  10. Patent 2243233 (RU) (2004) Betulin derivatives as complement inhibitors / A.P. Kaplun, Yu.E. Andiya-Pravdivy, S.V. Bureeva, L.V. Kozlov and V.I. Shvets

  11. V. I. Grishkovets Synthesis of triterpenoid sulfates using the S03-dimethylsulfoxide complex. Chem. Nat. Comp. 1 (1999) 91–93.

  12. Vasilyeva N.Yu, Kazachenko AS, Malyar YuN, Kuznetsov BN (2020) Sulfation of betulin with chlorosulfonic acid in pyridine. J. Sib. Fed. Univ. Chem. 13(3):447–459

    Article  Google Scholar 

  13. Kazachenko AS, Malyar YuN, Vasilyeva NYu, Borovkova VS, Issaoui N (2021) Optimization of guar gum galactomannan sulfation process with sulfamic acid. Biomass Conv Bioref. https://doi.org/10.1007/s13399-021-01895-y

    Article  Google Scholar 

  14. Kazachenko AS, Malyar YN, Vasilyeva NY, Fetisova OYu, Chudina AI, Sudakova IG, Antonov AV, Borovkova VS, Kuznetsova SA (2021) isolation and sulfation of galactoglucomannan from larch wood (Larix sibirica). Wood Sci Technol 55:1091–1107. https://doi.org/10.1007/s00226-021-01299-1

    Article  Google Scholar 

  15. Kazachenko AS, Malyar YN, Vasilyeva NY, Bondarenko GN, Korolkova IV, Antonov AV, Karacharov AA, Fetisova OY, Skvortsova GP (2020). «Green» synthesis and characterization of galactomannan sulfates obtained using sulfamic acid. Biomass Conv. Bioref. https://doi.org/10.1007/s13399-020-00855-2

  16. Akman F, Kazachenko AS, Vasilyeva NYu, Malyar YuN (2020) Synthesis and characterization of starch sulfates obtained by the sulfamic acid-urea complex. J Mol Struct. https://doi.org/10.1016/j.molstruc.2020.127899

    Article  Google Scholar 

  17. Malyar YN, Vasilyeva NY, Kazachenko AS, Borovkova VS, Skripnikov AM, Miroshnikova AV, Zimonin DV, Ionin VA, Kazachenko AS, Issaoui N (2021) Modification of Arabinogalactan isolated from Larix sibirica Ledeb. into sulfated derivatives with the controlled molecular weights. Molecules. 26:5364. https://doi.org/10.3390/molecules26175364

    Article  Google Scholar 

  18. Kazachenko AS, Vasilyeva NY, Malyar YN, Kazachenko AS (2021) Mathematical optimization, the effect of the catalyst and solvent on the process of starch sulfation with sulfamic acid. Lect Notes Netw Syst 230:1–8

    Google Scholar 

  19. Kuznetsova SA, Skvortsova GP, Maliar IuN, Skurydina ES, Veselova OF (2014) Extraction of betulin from birch bark and study of its physico-chemical and pharmacological properties. Rus J Bioorg Chem 40(7):742–747

    Article  Google Scholar 

  20. Gordon A, Ford R. Sputnik khimika. Chemist,s satellite. Moscow, 1976, 541 p. (in Russ.)

  21. Gromov NV, Taran OP, Yatsenko DA, Ayupov AB, Loppine-Serani A, Amoni S, Agabekov VE (2014) Development of sulfonated catalysts based on graphite-like carbon material Sibunit for cellulose hydrolysis. J Sib Fed Univ Chem 7(1):87–99

    Google Scholar 

  22. Koskin AP, Larichev YV, Mishakov IV, Mel'gunov MS, Vedyagin AA (2020) Synthesis and characterization of carbon nanomaterials functionalized by direct treatment with sulfonating agents. Micropor. Mesopor. Mater 110130. doi:https://doi.org/10.1016/j.micromeso.2020.110130

  23. Meng X, Bhagia S, Wang Y, Zhou Y, Pu Y, Dunlap JR, Shuai L, Ragauskas AJ, Yoo C, G, (2020) Effects of the advanced organosolv pretreatment strategies on structural properties of woody biomass. Ind. Crop. Prod. 146:112144

    Article  Google Scholar 

  24. Alakurtti S, Mäkelä T, Koskimies S, Yli-Kauhaluoma J (2006) Pharmacological properties of the ubiquitous natural product betulin. Eur J Pharm Sci 29(1):1–13

    Article  Google Scholar 

  25. Tang J-J, Li J-G, Qi W, Qiu W-W, Li P-S, Li B-L, Song B-L (2011) Inhibition of SREBP by a small molecule, betulin, improves hyperlipidemia and insulin resistance and reduces atherosclerotic plaques. Cell Metabol 13(1):44–56

    Article  Google Scholar 

  26. Caputo H, Straub JE, Grinstaff MW (2019) Design, synthesis, and biomedical applications of synthetic sulphated polysaccharides. Chem Soc Rev 48:2338–2365. https://doi.org/10.1039/c7cs00593h

    Article  Google Scholar 

  27. Al-Horani RA, Desai UR (2010) Chemical sulfation of small molecules—advances and challenges. Tetrahedron 66:2907–2918

    Article  Google Scholar 

  28. Spillane W, Malaubier J-B (2014) Sulfamic acid and its N- and O-substituted derivatives. Chem Rev 114:2507–2586. https://doi.org/10.1021/cr400230c

    Article  Google Scholar 

  29. Kazachenko AS, Vasilieva NY, Borovkova VS, Fetisova OY, Issaoui N, Malyar YN, Elsuf'ev EV, Karacharov AA, Skripnikov AM, Miroshnikova AV, Kazachenko AS, Zimonin DV, Ionin VA (2021) Food xanthan polysaccharide sulfation process with sulfamic acid. Foods 10

  30. Kazachenko AS, Akman F, Malyar YN, Issaoui N, Vasilieva NY, Karacharov AA (2021) Synthesis optimization, DFT and physicochemical study of chitosan sulfates. J Molec Struct 1245. https://doi.org/10.1016/j.molstruc.2021.131083

  31. Kazachenko AS, Akman F, Medimagh M, Issaoui N, Vasilieva NYu, Malyar YuN, Sudakova IG, Karacharov AA, Miroshnikova AV, Al-Dossary OM (2021) Sulfation of diethylaminoethyl-cellulose: QTAIM topological analysis and experimental and DFT study of the properties. ACS Omega. https://doi.org/10.1021/acsomega.1c02570

    Article  Google Scholar 

  32. Kuznetsov BN, Vasilyeva NYu, Kazachenko AS, Skvortsova GP, Levdansky VA, Lutoshkin MA (2018) Development of a method for sulfation of ethanol lignin of abies wood using sulfamic acid. J Sib Fed Univ Chem 11(1):122–130

    Article  Google Scholar 

  33. Levdansky, V.A., Vasilyeva, N.Y., Malyar, Y.N., LevdanskyA. V., Kondrasenko A. A., Kazachenko A. S., Kuznetsov B. N. Sulfation of ethanol lignin of abies wood by sulfamic acid in N,N-dimethylformamide medium. Biomass Conv. Bioref. (2020). https://doi.org/10.1007/s13399-020-00706-0

  34. Kuznetsov BN, Vasilyeva NY, Kazachenko AS, Levdansky VA, Kondrasenko AA, Malyar YN, Skvortsova GP, Lutoshkin M (2020) Optimization of the process of abies ethanol lignin sulfation by sulfamic acid – urea mixture in 1,4-dioxane medium. Wood Sci Technol https://doi.org/10.1007/s00226-020-01157-6

  35. Kazachenko AS, Levdansky VA, Levdansky AV, Kuznetsov BN (2021) Mathematical optimization of the process of birch wood xylan sulfation by sulfamic acid in N. N-dimethylformamide medium Khimiya Rastit Syr’ya 2:87–94

    Google Scholar 

  36. Akman F, Issaoui N, Kazachenko AS (2020) Intermolecular hydrogen bond interactions in the thiourea/water complexes (Thio-(H2O)n) (n = 1, …, 5): X-ray, DFT, NBO, AIM, and RDG analyses. J Mol Model 26:1–16. https://doi.org/10.1007/s00894-020-04423-3

    Article  Google Scholar 

  37. Yokoya M, Kimura S, Yamanaka M (2020) Urea derivatives as functional molecules: supramolecular capsules, supramolecular polymers, supramolecular gels, artificial hosts, and catalysts. Chemistry 27:5601–5614

    Article  Google Scholar 

  38. Civera C, del Valle JC, Elorza MA, Elorza B, Arias C, Díaz-Oliva C, Catalán J, Blanco FG (2020) Solvatochromism in urea/water and urea-derivative/water solutions. Phys Chem Chem Phys 22:25165–25176. https://doi.org/10.1039/d0cp03816d

    Article  Google Scholar 

  39. Kazachenko AS, Akman F, Abdelmoulahi H, Issaoui N, Malyar YN, Al-Dossary O, Wojcik MJ (2021) Intermolecular hydrogen bonds interactions in water clusters of ammonium sulfamate: FTIR, X-ray diffraction, AIM, DFT, RDG, ELF, NBO analysis. J Molec Liq. https://doi.org/10.1016/j.molliq.2021.117475

  40. Tonani A, Novello A, Sirna K (2018) Cellulose substrate with anti-flame properties and relative production method. Bull. № 10

  41. Lewin MI (1997) Sulfation of cotton and wool flame retarding of polymers with sulfamates. J. Fire Sci. 15:263–267

    Article  Google Scholar 

  42. Kazachenko AS, Vasilieva NY, Malyar Yu N, Karacharov AA, Kondrasenko AA, Levdanskiy AV, Borovkova VS, Miroshnikova AV, Issaoui N, Kazachenko AS, Al-Dossary O, Wojcik MJ (2022) Sulfation of arabinogalactan with ammonium sulfamate. Biomass Conv. Bioref

  43. Sirviö JA, Ukkola J, Liimatainen H (2019) Direct sulfation of cellulose fibers using a reactive deep eutectic solvent to produce highly charged cellulose nanofibers. Cellulose 26:2303–2316. https://doi.org/10.1007/s10570-019-02257-8

    Article  Google Scholar 

  44. Kazachenko AS, Tarabanko VE, Miroshnikova AV, Sychev VV, Skripnikov AM, Malyar YN, Mikhlin YL, Baryshnikov SV, Taran OP (2021) Reductive catalytic fractionation of flax shive over Ru/C catalysts. Catalysts 11(1):42. https://doi.org/10.3390/catal11010042

    Article  Google Scholar 

  45. Frija LMT, Afonso CAM (2012) Amberlyst®-15: a reusable heterogeneous catalyst for the dehydration of tertiary alcohols. Tetrahedron. 68(36):7414–7421

    Article  Google Scholar 

  46. Ramírez E, Bringué R, Fité C, Iborra M, Tejero J, Cunill F (2017) Role of ion-exchange resins as catalyst in the reaction-network of transformation of biomass into biofuels. J Chem Technol Biotechnol 92:2775–2786. https://doi.org/10.1002/jctb.5352

    Article  Google Scholar 

  47. Barbaro P, Liguori F (2009) Ion exchange resins: catalyst recovery and recycle. Chem Rev 109(2):515–529. https://doi.org/10.1021/cr800404j

    Article  Google Scholar 

  48. Bhandari VM (2016) Industrial catalytic processes for fine and specialty chemicals || ion exchange resin catalyzed reactions—an overview. 393–426. doi:https://doi.org/10.1016/b978-0-12-801457-8.00009-4

  49. Howard MJ, Jones MD, Roberts MS, Taylor SA (1993) C1 to acetyls: catalysis and process. Catal Today 18:325–354

    Article  Google Scholar 

  50. Diwakar MM, Deshpande RM, Chaudhari RV (2005) Hydroformylation of 1-hexene using Rh/TPPTS complex exchanged on anion exchange resin: kinetic studies. J Mol Catal A Chem. 232:179–186

    Article  Google Scholar 

  51. Zhenghong G, Jing SY, Sipin W, Ping Y (2001) Appl Catal A 209:27

    Article  Google Scholar 

  52. Bihani M, Bora PP, Bez G, Askari H (2013) Amberlyst A21: a reusable solid catalyst for green synthesis of pyran annulated heterocycles at room temperature. Compt Rend Chim 16(5):419–426. https://doi.org/10.1016/j.crci.2012.11.018

    Article  Google Scholar 

  53. Cabral NM, Lorenti JP, Wi Plass, Gallo JMR (2020) Solid acid resin Amberlyst 45 as a catalyst for the transesterification of vegetable oil. Front. Chem. 8:305. https://doi.org/10.3389/fchem.2020.00305

    Article  Google Scholar 

  54. Sass RL (1960) A neutron diffraction study on the crystal structure of sulfamic acid. Acta Crystallogr A 13(4):320–324. https://doi.org/10.1107/S0365110X60000789

    Article  Google Scholar 

  55. Levdansky AV, Vasilyeva NYu, Kondrasenko AA, Levdansky VA, Malyar YuN, Kazachenko AS, Kuznetsov BN (2021) Sulfation of arabinogalactan with sulfamic acid under homogeneous conditions in dimethylsulfoxide medium. Wood Sci Technol. https://doi.org/10.1007/s00226-021-01341-2

    Article  Google Scholar 

  56. Malyar YN, Kazachenko A, Vasilyeva NY, Fetisova OY, Borovkova V, Miroshnikova A, Levdansky A, Skripnikov A (2021) Sulfation of wheat straw soda lignin: role of solvents and catalysts. Catal Today. https://doi.org/10.1016/j.cattod.2021.07.03

    Article  Google Scholar 

  57. Boreen AL, Arnold WA, Mcneill K (2004) Photochemical fate of sulfa drugs in the aquatic environment: sulfa drugs containing five-membered heterocyclic groups. Environ Sci Technol 38(14):3933–3940

    Article  Google Scholar 

  58. Hu J, Li X, Liu F, Fu W, Lin L, Li B (2020) Comparison of chemical and biological degradation of sulfonamides: solving the mystery of sulfonamide transformation. J. Hazard. Mater. 424:2022. https://doi.org/10.1016/j.jhazmat.2021.127661

    Article  Google Scholar 

  59. Lewin M, Brozek J, Martens MM (2002) The system polyamide/sulfamate/dipentaerythritol: flame retardancy and chemical reactions. Polym Adv Technol 13(10–12):1091–1102

    Article  Google Scholar 

  60. Falamas A, Cınta Pınzaru S, Dehelean CA, Peev CI, Soica C (2011) Betulin and its natural resources potential anticancer drug candidate seen by FT-Raman and FT-IR spectroscopy. J. Raman Spectrosc. 42:97–107

    Article  Google Scholar 

  61. Griffiths P, de Hasseth JA (2007) Fourier transform infrared spectrometry (2nd ed.). Wiley-Blackwell

  62. Lutoshkin MA, Petrov AI, Malyar YuN, Kazachenko AS (2021) Interaction of rare-earth metals and some perfluorinated β-diketones. Inorg Chem 60(5):3291–3304. https://doi.org/10.1021/acs.inorgchem.0c03717

    Article  Google Scholar 

  63. Lutoshkin MA, Petrov AI, Kuznetsov BN, Kazachenko AS (2019) Aqueous complexation of morin and its sulfonate derivative with lanthanum(III) and trivalent lanthanides. J Solut Chem. https://doi.org/10.1007/s10953-01900877

    Article  Google Scholar 

  64. Lutoshkin MA, Kazachenko AS (2017) Assessment of various density functionals and solvation models to describe acid-base, spectral and complexing properties of thiobarbituric and barbituric acids in aqueous solution. J Comput Methods Sci Engineer 17(4):851–863. https://doi.org/10.3233/JCM-170745

    Article  Google Scholar 

  65. Krichen F, Bougatef H, Capitani F, Ben Amor I, Koubaa I, Gargouri J, Maccari Francesca, Mantovani V, Galeotti F, Volpi N, Bougatef A (2018) Purification and structural elucidation of chondroitin sulfate/dermatan sulfate from Atlantic bluefin tuna (Thunnus thynnus) skins and their anticoagulant and ACE inhibitory activities. RSC Advances 8(66):37965–37975. https://doi.org/10.1039/c8ra06704j

    Article  Google Scholar 

  66. Drebushchak TN, Mikhailovskaya AV, Drebushchak VA, Mikhailenko MA, Myzâ SA, Shakhtshneider TP, Kuznetsova SA (2020) Crystalline forms of betulin: polymorphism or pseudopolymorphism? J Struct Chem 61(8):1260–1266. https://doi.org/10.1134/S0022476620080119

    Article  Google Scholar 

  67. Melnikova N, Malygina D, Klabukova I, Belov D, Vasin V, Petrov P, Knyazev A, Markin A (2018) Betulin-3,28-diphosphate. Physico-chemical properties and in vitro biological activity experiments Molecules 23(5):1175. https://doi.org/10.3390/molecules23051175

    Article  Google Scholar 

  68. Kumar R, Vijayan N, Khan N, Sonia M, Kumari M, Jewariya R. Srivastava (2020) Sulphamic acid: potential single crystal for nonlinear optical applications. J. Mater. Sci.: Mater. Electr. 31:14271–14278

    Google Scholar 

  69. Valluvan K, Selvaraju S (2006) Kumararaman, Growth and characterization of sulphamic acid single crystals: a nonlinear optical material. Mater Chem Phys 97:81–84

    Article  Google Scholar 

  70. Kazachenko AS, Akman F, Vasilieva NY, Issaoui N, Malyar YN, Kondrasenko AA, Borovkova VS, Miroshnikova AV, Kazachenko AS, Al-Dossary O, Wojcik MJ, Berezhnaya YD, Elsuf’ev E.V. (2022) Catalytic sulfation of betulin with sulfamic acid: experiment and DFT calculation. Int. J. Mol. Sci. 23:1602. https://doi.org/10.3390/ijms23031602

    Article  Google Scholar 

  71. Levdanskii VA, Levdanskii AV, Kuznetsov BN (2014) Sulfation of betulin by sulfamic acid in DMF and dioxane. Chem Nat Comp 50(6):1029–1031

    Article  Google Scholar 

  72. Sun J, Abednatanzi S, Van Der Voort P, Liu Y-Y, Leus K (2020) POM@MOF hybrids: synthesis and applications. Catalysts 10(5):578. https://doi.org/10.3390/catal10050578

    Article  Google Scholar 

  73. Heravi MM, Hosseinnejad T, Tamimi M, Zadsirjan V, Mirzaei M (2020) 12-Tungstoboric acid (H5BW12O40) as an efficient Lewis acid catalyst for the synthesis of chromenopyrimidine-2,5-diones and thioxochromenopyrimidin-5-ones: Joint experimental and computational study. J Mol Struct 1205:127598. https://doi.org/10.1016/j.molstruc.2019.127598

    Article  Google Scholar 

  74. Taghipour Fatemeh, Mirzaei Masoud (2020) Construction of a dinuclear cluster containing La(ш) and 4-hydroxypyridine-2,6-dicarboxylic acid to modify Keggin-type polyoxometalate. J. Mol. Struct. 1219:128594

    Article  Google Scholar 

  75. Ghanbarian M, Beheshtiha SYS, Heravi MM, Mirzaei M, Zadsirjan V, Lotfian N (2019). A nano-sized Nd–Ag@polyoxometalate catalyst for catalyzing the multicomponent Hantzsch and Biginelli reactions. J Cluster Sci. doi:https://doi.org/10.1007/s10876-019-01739-w

  76. Bazargan Maryam, Ghaemi Ferial, Amiri Amirhassan, Mirzaei Masoud (2021) Metal–organic framework-based sorbents in analytical sample preparation. Coordination Chemistry Reviews. 445:214107

    Article  Google Scholar 

  77. Lotfian N, Heravi MM, Mirzaei M, Heidari B (2019) Applications of inorganic-organic hybrid architectures based on polyoxometalates in catalyzed and photocatalyzed chemical transformations. Appl Organometal Chem. 33:e4808

    Article  Google Scholar 

Download references

Acknowledgements

This study was carried out within the budget plan no. 0287-2021-0017 for the Institute of Chemistry and Chemical Technology, Siberian Branch of the Russian Academy of Sciences on the equipment of the Krasnoyarsk Regional Center for Collective Use, Krasnoyarsk Scientific Center, Siberian Branch of the Russian Academy of Sciences. The authors are grateful to M.A. Lutoshkin for recording the UV-Vis spectra.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aleksandr S. Kazachenko.

Ethics declarations

Ethics approval

N/A. This work does not contain any studies with human participants or animals by any of the authors.

Consent for publication

N/A.

Consent to participate

N/A.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kazachenko, A.S., Vasilieva, N.Y., Fetisova, O.Y. et al. New reactions of betulin with sulfamic acid and ammonium sulfamate in the presence of solid catalysts. Biomass Conv. Bioref. 14, 4245–4256 (2024). https://doi.org/10.1007/s13399-022-02587-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13399-022-02587-x

Keywords

Navigation