Skip to main content

Advertisement

Log in

Increasing the cell productivity of mixotrophic growth of Spirulina sp. LEB 18 with crude glycerol

  • Original Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

This study investigated the growth of microalgae Spirulina sp. LEB 18 in medium supplemented with crude glycerol to evaluate the biochemical composition of the biomass and its productivity during 72 h of culture. The microalgae cultivated in medium supplemented with 2.5 g L−1 glycerol presented a fourfold higher cell productivity (28.04 mg L−1 h−1) than the control culture, reaching a maximum biomass concentration of 1.08 g L−1 in 36 h. Among the evaluated compounds, proteins were predominant in the biomass throughout the crop, and at the highest concentration of biomass (36 h), the yield was 384.15 mg L−1. The composition of unsaturated fatty acids increased approximately twofold with the organic carbon source (493.53 mg g−1) compared to the control. The predominant fatty acid was oleic acid, reaching 336.00 mg g−1, in the culture supplemented with glycerol. The increase in productivity provides a cost reduction and increases the feasibility of obtaining microalgal biomass products, including biofuels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

Not applicable.

Code availability

Not applicable.

References

  1. Garrido-Cardenas JA, Manzano-Agugliaro F, Acien-Fernandez FG, Molina-Grima E (2018) Microalgae research worldwide. Algal Res 35:50–60. https://doi.org/10.1016/J.ALGAL.2018.08.005

    Article  Google Scholar 

  2. Luo X, Ge X, Cui S, Li Y (2016) Value-added processing of crude glycerol into chemicals and polymers. Bioresour Technol 215:144–154. https://doi.org/10.1016/J.BIORTECH.2016.03.042

    Article  ADS  CAS  PubMed  Google Scholar 

  3. Murakawa N, Sakamoto T, Kanoh M, Park S, Kishino S, Ogawa J, Sakuradani E (2022) Microbial production of hydroxy fatty acids utilizing crude glycerol. Biocatal Agric Biotechnol 39:1-8, 102286. https://doi.org/10.1016/J.BCAB.2022.102286

  4. Khademi MH, Lotfi-Varnoosfaderani M (2022) Use of biomass-derived glycerol as an alternative to fossil fuels for aniline production: energy saving and environmental aspects. Fuel 310:122359. https://doi.org/10.1016/J.FUEL.2021.122359

    Article  CAS  Google Scholar 

  5. Morais EG, Nunez IL, Druzian JI, Morais MG, Rosa APC, Costa JAV (2020) Increase in biomass productivity and protein content of Spirulina sp. LEB 18 (Arthrospira) cultivated with crude glycerol. Biomass Convers Bio 12:597–605. https://doi.org/10.1007/s13399-020-00934-4

    Article  CAS  Google Scholar 

  6. Morais EG, Druzian JI, Nunez IL, Morais MG, Costa JAV (2019) Glycerol increases growth, protein production and alters the fatty acids profile of Spirulina (Arthrospira) sp LEB 18. Process Biochem 76:40–45. https://doi.org/10.1016/J.PROCBIO.2018.09.024

    Article  CAS  Google Scholar 

  7. Paranjape K, Leite GB, Hallenbeck PC (2016) Strain variation in microalgal lipid production during mixotrophic growth with glycerol. Bioresour Technol 204:80–88. https://doi.org/10.1016/J.BIORTECH.2015.12.071

    Article  CAS  PubMed  Google Scholar 

  8. Deng X, Chen B, Xue C, Li D, Hu X, Gao K (2019) Biomass production and biochemical profiles of a freshwater microalga Chlorella kessleri in mixotrophic culture: effects of light intensity and photoperiodicity. Bioresour Technol 273:358–367. https://doi.org/10.1016/J.BIORTECH.2018.11.032

    Article  CAS  PubMed  Google Scholar 

  9. Zarrouk C (1966) Contribution à l’étude d’une cyanophycée. Influence de diveurs facteurs physiques et chimiques sur la croissance et photosynthese de Spirulina maxima. [s.n.]

  10. Ribeiro PLL, da Silva ACMS, Filho JAM, Druzian JI (2015) Impact of different by-products from the biodiesel industry and bacterial strains on the production, composition, and properties of novel polyhydroxyalkanoates containing achiral building blocks. Ind Crop Prod 69:212–223. https://doi.org/10.1016/J.INDCROP.2015.02.035

    Article  CAS  Google Scholar 

  11. Costa JAV, Colla LM, Duarte-Filho PD, Kabke K, Weber A (2002) Modelling of Spirulina platensis growth in fresh water using response surface methodology. World J Microbiol Biotechnol 18:603–607. https://doi.org/10.1023/A:1016822717583

    Article  Google Scholar 

  12. Schimidell W, Lima AU, Aquarone E, Borzani W (2001) Biotecnologia Industrial. v. 2. Edgard Blücher LTDA, São Paulo

  13. Verhulst P-F (1838) Notice sur la loi que la population suit dans son accroissement—ScienceOpen. Quetelet 10:113–121

    Google Scholar 

  14. Viruela A, Aparicio S, Robles A, Borrás LF, Serralta J, Seco A, Ferrer J (2021) Kinetic modeling of autotrophic microalgae mainline processes for sewage treatment in phosphorus-replete and -deplete culture conditions. Sci Total Environ 797:149165. https://doi.org/10.1016/J.SCITOTENV.2021.1491650

    Article  ADS  CAS  PubMed  Google Scholar 

  15. Aparicio S, Serna-García R, Seco A, Ferrer J, Borrás LF, Robles A (2022) Global sensitivity and uncertainty analysis of a microalgae model for wastewater treatment. Sci Total Environ 806:150504. https://doi.org/10.1016/J.SCITOTENV.2021.150504

    Article  ADS  CAS  PubMed  Google Scholar 

  16. Bondioli P, della Bella L (2005) An alternative spectrophotometric method for the determination of free glycerol in biodiesel. Eur J Lipid Sci Tech 107:153–157. https://doi.org/10.1002/EJLT.200401054

    Article  CAS  Google Scholar 

  17. Dubois M, Gilles KA, Hamilton JK, Rebers PA, Smith F (1956) Colorimetric method for determination of sugars and related substances. Anal Chem 28:350–356. https://doi.org/10.1021/ac60111a017

    Article  CAS  Google Scholar 

  18. Lowry Oh, Nj R, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    Article  CAS  PubMed  Google Scholar 

  19. Marsh JB, Weinstein DB (1966) Simple charring method for determination of lipids. J Lipid Res 7:574–576. https://doi.org/10.1016/s0022-2275(20)39274-9

    Article  CAS  PubMed  Google Scholar 

  20. Lichtenthaler HK (1987) Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. Methods Enzimol 148:350–382. https://doi.org/10.1016/0076-6879(87)48036-1

    Article  CAS  Google Scholar 

  21. Folch J, Lees M, Stanley SGH (1957) A simple method for the isolation and purification of total lipids from animal tissues. J Biol Chem 226:497–509

    Article  CAS  PubMed  Google Scholar 

  22. Zhan J, Rong J, Wang Q (2017) Mixotrophic cultivation, a preferable microalgae cultivation mode for biomass/bioenergy production, and bioremediation, advances and prospect. Int J Hydrogen Energy 42:8505–8517. https://doi.org/10.1016/J.IJHYDENE.2016.12.021

    Article  CAS  Google Scholar 

  23. Ma X, Zheng H, Addy M, Anderson E, Liu Y, Chen P, Ruan R (2016) Cultivation of Chlorella vulgaris in wastewater with waste glycerol: strategies for improving nutrients removal and enhancing lipid production. Bioresour Technol 207:252–261. https://doi.org/10.1016/J.BIORTECH.2016.02.013

    Article  CAS  PubMed  Google Scholar 

  24. Neilson AH, Lewin RA (2019) The uptake and utilization of organic carbon by algae: an essay in comparative biochemistry. Phycologia 13:227–264. https://doi.org/10.2216/I0031-8884-13-3-227.1

    Article  Google Scholar 

  25. Rattanapoltee P, Dujjanutat P, Muanruksa P, Kaewkannetra P (2021) Biocircular platform for third generation biodiesel production: batch/fed batch mixotrophic cultivations of microalgae using glycerol waste as a carbon source. Biochem Eng J175:1369–1703. https://doi.org/10.1016/j.bej.2021.108128

    Article  CAS  Google Scholar 

  26. Li T, Kirchhoff H, Gargouri M, Feng J, Cousins AB, Pienkos PT, Gang DR, Chen S (2016) Assessment of photosynthesis regulation in mixotrophically cultured microalga Chlorella sorokiniana. Algal Res 19:30–38. https://doi.org/10.1016/J.ALGAL.2016.07.012

    Article  Google Scholar 

  27. Katiyar R, Gurjar BR, Bharti RK, Kumar A, Biswas S, Pruthi V (2017) Heterotrophic cultivation of microalgae in photobioreactor using low cost crude glycerol for enhanced biodiesel production. Renew Energy 113:1359–1365. https://doi.org/10.1016/J.RENENE.2017.06.100

    Article  CAS  Google Scholar 

  28. Wang J, Yang H, Wang F (2014) Mixotrophic cultivation of microalgae for biodiesel production: status and prospects. Appl Biochem Biotech 172:3307–3329. https://doi.org/10.1007/s12010-014-0729-1

    Article  CAS  Google Scholar 

  29. Jesus CS, Uebel LS, Costa SS, Miranda AL, Morais EG, Morais MG, Costa JAV, Nunes IL, Ferreira ES, Druzian JI (2018) Outdoor pilot-scale cultivation of Spirulina sp. LEB-18 in different geographic locations for evaluating its growth and chemical composition. Bioresour Technol 256:86–94. https://doi.org/10.1016/J.BIORTECH.2018.01.149

    Article  PubMed  Google Scholar 

  30. Jiménez C, Cossío BR, Niell FX (2003) Relationship between physicochemical variables and productivity in open ponds for the production of Spirulina: a predictive model of algal yield. Aquaculture 221:331–345. https://doi.org/10.1016/S0044-8486(03)00123-6

    Article  Google Scholar 

  31. Song M, Pei H (2018) The growth and lipid accumulation of Scenedesmus quadricauda during batch mixotrophic/heterotrophic cultivation using xylose as a carbon source. Bioresour Technol 263:525–531. https://doi.org/10.1016/J.BIORTECH.2018.05.020

    Article  CAS  PubMed  Google Scholar 

  32. Nelson DL, Cox MM (2019) Princípios de Bioquímica de Lehninger, 7th ed. Artmed

  33. Lai J, Yu Z, Song X, Cao X, Han X (2011) Responses of the growth and biochemical composition of Prorocentrum donghaiense to different nitrogen and phosphorus concentrations. J Exp Mar Biol Ecol 405:6–17. https://doi.org/10.1016/J.JEMBE.2011.05.010

    Article  CAS  Google Scholar 

  34. Knothe G (2008) “Designer” biodiesel: optimizing fatty ester composition to improve fuel properties. Energy Fuel 22:1358–1364. https://doi.org/10.1021/EF700639E

    Article  CAS  Google Scholar 

  35. Kumar SV, das Sarkar S, Das BK, Sarkar DJ, Gogoi P, Maurye P, Mitra T, Talukder AK, Ganguly S, Nag SK, Munilkumar S, Samanta S (2022) Sustainable biodiesel production from microalgae Graesiella emersonii through valorization of garden wastes-based vermicompost. Sci Total Environ 807:150995. https://doi.org/10.1016/J.SCITOTENV.2021.150995

    Article  Google Scholar 

  36. El-Kassas HY (2013) Growth and fatty acid profile of the marine microalga Picochlorum Sp. grown under nutrient stress conditions. Egypt J Aquatic Res 39:233–239. https://doi.org/10.1016/J.EJAR.2013.12.007

    Article  Google Scholar 

  37. Narayan MS, Manoj GP, Vatchravelu K (2005) Utilization of glycerol as carbon source on the growth, pigment and lipid production in Spirulina platensis. Int J Food Sci Nutr 56:521–528. https://doi.org/10.1080/09637480500410085

    Article  CAS  PubMed  Google Scholar 

  38. Singhasuwan S, Choorit W, Sirisansaneeyakul S, Kokkaew N, Chisti Y (2015) Carbon-to-nitrogen ratio affects the biomass composition and the fatty acid profile of heterotrophically grown Chlorella sp. TISTR 8990 for biodiesel production. J Biotechnol 216:169–177. https://doi.org/10.1016/J.JBIOTEC.2015.10.003

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior-Brasil (CAPES)-Finance Code 001. The authors would also like to thank the Ministry of Science, Technology, Innovations, and Communications, and the Program to Support the Publication of Academic Production/PROPESP/FURG/2018 for providing financial support.

Author information

Authors and Affiliations

Authors

Contributions

EGM: contributed to all aspects of this work, performed material preparation, data collection and analysis, and wrote the first draft of the manuscript. ILN: gave some valuable comments and suggestions to this work and funding acquisition. JID: funding acquisition and co-supervision. MGM: conceptualization, writing, review, and editing. APCR: writing, review, co-supervision, and editing. JAVC: supervision, editing, and funding acquisition. All authors reviewed the manuscript. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Jorge Alberto Vieira Costa.

Ethics declarations

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Morais, E.G., Nunes, I.L., Druzian, J.I. et al. Increasing the cell productivity of mixotrophic growth of Spirulina sp. LEB 18 with crude glycerol. Biomass Conv. Bioref. 14, 7305–7313 (2024). https://doi.org/10.1007/s13399-022-02461-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13399-022-02461-w

Keywords

Navigation