Skip to main content

Advertisement

Log in

Valorization of the chicken by-product waste with supercritical CO2 inactivation of microbes towards sustainable utilization

  • Original Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

There is an increasing concern on the presence of antibiotic-resistant bacteria in the environment. The existing practice of chicken by-product waste is to dispose in a landfill. Chicken by-product waste may contain antibiotic-resistant bacteria. Thus, the disposal of chicken by-product waste into the landfill leads to the release of antibiotic-resistant bacteria into the environment. In the present study, the supercritical CO2 (scCO2) technology was utilized to sterilize the chicken by-product waste to ensure safe handling for the subsequent processing towards sustainable utilization of the waste by-product. In addition, the presence of bacteria in the chicken by-product waste and their antibiotic susceptibility were identified. The influence of the scCO2 sterilization on the inactivation of the antibiotic-resistant bacteria in chicken by-product waste was determined with varying pressure (8–40 MPa), temperature (30–80 °C), and treatment time (15–90 min). The experimental conditions of the scCO2 sterilization were optimized based on the maximum log reduction (logCFU/g) of bacteria in sterilized chicken by-product waste. The optimum experimental conditions for the complete inactivation of the antibiotic-resistant bacteria in sterilized chicken by-product waste were scCO2 pressure 18 MPa, temperature 60 °C, and treatment time 45 min. The sterilized chicken by-product waste contains about 50% fat. The findings of the present study would be useful to determine the sustainable utilization of chicken by-product waste with minimizing human health hazards and environmental pollution.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. He Y, Yuan Q, Mathieu J, Stadler L, Senehi N, Sun R, Alvarez PJJ (2020) Antibiotic resistance genes from livestock waste: occurrence, dissemination, and treatment. npj Clean Water 3(1):4

    Article  Google Scholar 

  2. He P, Huang J, Yu Z, Xu X, Raga R, Lü F (2021) Antibiotic resistance contamination in four Italian municipal solid waste landfills sites spanning 34 years. Chemosphere 266:129182

    Article  Google Scholar 

  3. García J, García-Galán MJ, Day JW, Boopathy R, White JR, Wallace S, Hunter RG (2020) A review of emerging organic contaminants (EOCs), antibiotic resistant bacteria (ARB), and antibiotic resistance genes (ARGs) in the environment: increasing removal with wetlands and reducing environmental impacts. Bioresour Technol 307:123228

    Article  Google Scholar 

  4. Quaik S, Embrandiri A, Ravindran B, Hossain K, Al-Dhabi NA, Arasu MV, Ignacimuthu S, Ismail N (2020) Veterinary antibiotics in animal manure and manure laden soil: scenario and challenges in Asian countries. J King Saud Univ Sci 32(2):1300–1305

    Article  Google Scholar 

  5. Montoro-Dasi L, Villagra A, Sevilla-Navarro S, Pérez-Gracia MT, Vega S, Marin C (2020) The dynamic of antibiotic resistance in commensal Escherichia coli throughout the growing period in broiler chickens: fast-growing vs. slow-growing breeds. Poultry Sci 99(3):1591–1597

    Article  Google Scholar 

  6. Xiong W, Wang Y, Sun Y, Ma L, Zeng Q, Jiang X, Li A, Zeng Z, Zhang T (2018) Antibiotic-mediated changes in the fecal microbiome of broiler chickens define the incidence of antibiotic resistance genes. Microbiome 6(1):34

    Article  Google Scholar 

  7. Hasan B, Faruque R, Drobni M, Waldenström J, Sadique A, Ahmed KU, Islam Z, Parvez MBH, Olsen B, Alam M (2011) High prevalence of antibiotic resistance in pathogenic Escherichia coli from large- and small-scale poultry farms in Bangladesh. Avian Dis 55(4):689–692

    Article  Google Scholar 

  8. Shrestha A, Bajracharya AM, Subedi H, Turha RS, Kafle S, Sharma S, Neupane S, Chaudhary DK (2017) Multi-drug resistance and extended spectrum beta lactamase producing Gram negative bacteria from chicken meat in Bharatpur Metropolitan, Nepal. BMC Res Notes 10(1):574

    Article  Google Scholar 

  9. Azzam MI, Ezzat SM, Othman BA, El-Dougdoug KA (2017) Antibiotics resistance phenomenon and virulence ability in bacteria from water environment. Water Sci 31(2):109–121

    Article  Google Scholar 

  10. Hossain MS, Nik Ab Rahman NN, Balakrishnan V, Alkarkhi AFM, Ahmad Rajion Z, Ab Kadir MO (2015) Optimizing supercritical carbon dioxide in the inactivation of bacteria in clinical solid waste by using response surface methodology. Waste Manag 38:462–473

    Article  Google Scholar 

  11. Salem Allafi FA, Hossain MS, Ab Kadir MO, Hakim Shaah MA, Lalung J, Ahmad MI (2020) Waterless processing of sheep wool fiber in textile industry with supercritical CO2: potential and challenges. J Clean Prod 124819

  12. Norsalwani TLT, Hossain MS, Omar FM, Easa AM, Sofian AM, Kadir MOA (2020) Scale up study on the supercritical carbon dioxide sterilization of oil palm fresh fruits bunch. J Oil palm Res 32(1):64–74

    Google Scholar 

  13. Omar AKM, TengkuNorsalwani TL, Asmah MS, Badrulhisham ZY, Easa AM, Omar FM, Hossain MS, Zuknik MH, Nik Norulaini NA (2018) Implementation of the supercritical carbon dioxide technology in oil palm fresh fruits bunch sterilization: a review. J CO2 Util 25:205–215

    Article  Google Scholar 

  14. Soares GC, Learmonth DA, Vallejo MC, Davila SP, González P, Sousa RA, Oliveira AL (2019) Supercritical CO2 technology: the next standard sterilization technique? Mater Sci Eng C 99:520–540

    Article  Google Scholar 

  15. Scognamiglio F, Blanchy M, Borgogna M, Travan A, Donati I, Bosmans JWAM, Foulc MP, Bouvy ND, Paoletti S, Marsich E (2017) Effects of supercritical carbon dioxide sterilization on polysaccharidic membranes for surgical applications. Carbohyd Polym 173:482–488

    Article  Google Scholar 

  16. Yaldiz B, Saglam-Metiner P, Cam SB, Korkusuz P, Yesil-Celiktas O (2021) Effect of sterilization methods on the mechanical stability and extracellular matrix constituents of decellularized brain tissues. J Supercrit Fluids 175:105299

    Article  Google Scholar 

  17. Hossain MS, Balakrishnan V, Rahman NNNA, Rajion ZA, Kadir MOA (2013) Modeling the inactivation of Staphylococcus aureus and Serratia marcescens in clinical solid waste using supercritical fluid carbon dioxide. J Supercrit Fluids 83:47–56

    Article  Google Scholar 

  18. Mohd Omar AK, TengkuNorsalwani TL, Abdul Khalil HPS, Nagao H, Zuknik MH, Sohrab Hossain M, Nik Norulaini NA (2017) Waterless sterilization of oil palm fruitlets using supercritical carbon dioxide. J Supercrit Fluids 126:65–71

    Article  Google Scholar 

  19. Garcia-Gonzalez L, Geeraerd AH, Spilimbergo S, Elst K, Van Ginneken L, Debevere J, Van Impe JF, Devlieghere F (2007) High pressure carbon dioxide inactivation of microorganisms in foods: the past, the present and the future. Int J Food Microbiol 117(1):1–28

    Article  Google Scholar 

  20. Ribeiro N, Soares GC, Santos-Rosales V, Concheiro A, Alvarez-Lorenzo C, García-González CA, Oliveira AL (2020) A new era for sterilization based on supercritical CO2 technology. J Biomed Mater Res B Appl Biomater 108(2):399–428

    Article  Google Scholar 

  21. Sikin AM, Rizvi SS (2011) Recent patents on the sterilization of food and biomaterials by supercritical fluids. Recent Pat Food Nutr Agric 3(3):212–225

    Article  Google Scholar 

  22. Hudzicki J (2009) Kirby-Bauer disk diffusion susceptibility test protocol. Am Soc Microbiol

  23. Clinical and Laboratory Standards Institute (2013) Disc diffusion supplemental tables, Performance standards for antimicrobial susceptibility testing, Suite 1400, Wayne, PA, USA

  24. Ogundipe FO, Ojo OE, Feßler AT, Hanke D, Awoyomi OJ, Ojo DA, Akintokun AK, Schwarz S, Maurischat S (2020) Antimicrobial resistance and virulence of methicillin-resistant Staphylococcus aureus from human, chicken and environmental samples within live bird markets in three Nigerian cities. Antibiotics 9(9):588

    Article  Google Scholar 

  25. Musa L, CasagrandeProietti P, Branciari R, Menchetti L, Bellucci S, Ranucci D, Marenzoni ML, Franciosini MP (2020) Antimicrobial susceptibility of Escherichia coli and ESBL-producing Escherichia coli diffusion in conventional, organic and antibiotic-free meat chickens at slaughter. Anim Open Access J MDPI 10(7):1215

    Google Scholar 

  26. Obeng AS, Rickard H, Ndi O, Sexton M, Barton M (2013) Comparison of antimicrobial resistance patterns in enterococci from intensive and free range chickens in Australia. Avian Pathol 42(1):45–54

    Article  Google Scholar 

  27. Chen H, Guan Y, Wang A, Zhong Q (2022) Inactivation of Escherichia coli K12 on raw almonds using supercritical carbon dioxide and thyme oil. Food Microbiol 103:103955

    Article  Google Scholar 

  28. Allafi FA, Hossain MS, Shaah M, Lalung J, Ab Kadir MO, Ahmad MI (2021) Waterless sterilization and cleaning of sheep wool fiber using supercritical carbon dioxide. Textile Res J In press

  29. Hossain MS, Nik Norulaini NA, Banana AA, MohdZulkhairi AR, Ahmad Naim AY, Mohd Omar AK (2016) Modeling the supercritical carbon dioxide inactivation of Staphylococcus aureus, Escherichia coli and Bacillus subtilis in human body fluids clinical waste. Chem Eng J 296:173–181

    Article  Google Scholar 

  30. Hossain MS, Rahman NNNA, Balakrishnan V, Rajion ZA, Ab MO (2015) Kadir, Mathematical modeling of Enterococcus faecalis, Escherichia coli, and Bacillus sphaericus inactivation in infectious clinical solid waste by using steam autoclaving and supercritical fluid carbon dioxide sterilization. Chem Eng J 267:221–234

    Article  Google Scholar 

  31. Buszewski B, Wrona O, Mayya RP, Zakharenko AM, Kalenik TK, Golokhvast KS, Piekoszewski W, Rafińska K (2021) The potential application of supercritical CO2 in microbial inactivation of food raw materials and products. Crit Rev Food Sci Nutr 1–14

  32. Kim SR, Rhee MS, Kim BC, Kim KH (2007) Modeling the inactivation of Escherichia coli O157:H7 and generic Escherichia coli by supercritical carbon dioxide. Int J Food Microbiol 118(1):52–61

    Article  Google Scholar 

  33. Soegiantoro GH, Chang J, Rahmawati P, Christiani MF, Mufrodi Z (2019) Home-made eco green biodiesel from chicken fat (CIAT) and waste cooking oil (PAIL). Energy Procedia 158:1105–1109

    Article  Google Scholar 

  34. Kirubakaran M, Arul MozhiSelvan V (2018) A comprehensive review of low cost biodiesel production from waste chicken fat. Renew Sustain Energy Rev 82:390–401

    Article  Google Scholar 

Download references

Funding

The author would like to thank the Division of Research & Innovation, Universiti Sains Malaysia, for providing Short-Term Research Grant (304/PTEKIND/6315313) as a financial support. A.A. Ghfar is grateful to the Researchers Supporting Project number (RSP-2021/407), King Saud University, Riyadh, Saudi Arabia, for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Md. Sohrab Hossain or Venugopal Balkakrishnan.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ilias, M.K.M., Hossain, M.S., Zuknik, M.H. et al. Valorization of the chicken by-product waste with supercritical CO2 inactivation of microbes towards sustainable utilization. Biomass Conv. Bioref. 13, 13419–13431 (2023). https://doi.org/10.1007/s13399-022-02454-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13399-022-02454-9

Keywords

Navigation