Skip to main content

Advertisement

Log in

Destruction of representative submarine food waste using supercritical water oxidation

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

In this study, 13 types of organic materials were oxidized using H2O2 in a continuous flow reactor under the condition of supercritical water. The effect of the operational parameters on the conversion of total organic carbon (TOC) and total nitrogen (TN) was investigated, and the resulting quality of treated water was analyzed. It was found that these materials were easily oxidized with a TOC conversion achieving 99 % at temperature of 460 °C and TN conversion reaching 94 % at temperature of 500 °C. Rice decomposition was rapid, with TOC and TN decomposition rates of 99 % obtained within residence of 100 s at temperature of 460 °C. At temperature of 460 °C, pressure of 24 MPa, residence time of 100 s, and excess oxygen of 100 %, the quality of treated water attained levels commensurate with China’s Standards for Drinking Water Quality. Reaction rate equation parameters were obtained by fitting the experimental data to the differential equation obtained using the Runge–Kutta algorithm. The decrease of the TOC in water samples exhibited reaction orders of 0.95 for the TOC concentration and 0.628 for the oxygen concentration. The activation energy was 83.018 kJ/mol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Asselin E, Alfantazi A, Rogak S (2010) Corrosion of nickel-chromium alloys, stainless steel and niobium at supercritical water oxidation conditions. Corros Sci 52:118–124

    Article  CAS  Google Scholar 

  • Boukis N, Habicht W, Franz G, Dinjus E (2003) Behavior of Ni-base alloy 625 in methanol-supercritical water systems. Mater Corros 54:326–330

    Article  CAS  Google Scholar 

  • Calzavara Y, Joussot-Dubien C, Turc H-A, Fauvel E, Sarrade S (2004) A new reactor concept for hydrothermal oxidation. J Supercrit Fluids 31:195–206

    Article  CAS  Google Scholar 

  • Goto M, Nada T, Kodama A, Hirose T (1999) Kinetic analysis for destruction of municipal sewage sludge and alcohol distillery wastewater by supercritical water oxidation. Ind Eng Chem Res 38:1863–1865

    Article  CAS  Google Scholar 

  • Heger K, Uematsu M, Franck EU (1980) The static dielectric constant of water at high pressures and temperatures to 500 MPa and 550 °C. Ber Bunsen Phys Chem 84:758

    Article  CAS  Google Scholar 

  • Holgate HR, Tester JW (1994) Oxidation of hydrogen and carbon monoxide in sub- and supercritical water: reaction kinetics, pathways, and water-density effects. 1. Experimental results. J Phys Chem 98:800–809

    Article  CAS  Google Scholar 

  • JianLi Y, Savage PE (2000) Kinetics of catalytic supercritical water oxidation of phenol over TiO2. Environ Sci Technol 34:3191–3198

    Article  Google Scholar 

  • Jin F, Kishita A, Enomoto H (2001a) Oxidation of garbage in supercritical water. High Press Res 20:525–531

    Article  Google Scholar 

  • Jin F, Kishita A, Moriga T, Enomoto H (2001b) Kinetics of oxidation of food wastes with H2O2 in supercritical water. J Supercrit Fluids 19:251–262

    Article  CAS  Google Scholar 

  • Koido K, Ishida Y, Kumabe K, Matsumoto K, Hasegawa T (2010) Kinetics of ethanol oxidation in subcritical water. J Supercrit Fluids 55:246–251

    Article  CAS  Google Scholar 

  • Lee J-H, Son S-H, Viet TT, Lee C-H (2009) Decomposition of 2-chlorophenol by supercritical water oxidation with zirconium corrosion. Korean J Chem Eng 26(2):398–402

    Article  CAS  Google Scholar 

  • Mateos D, Portela JR, Mercadier J, Marias F, Marraud C, Cansell F (2005) New approach for kinetic parameters determination for hydrothermal oxidation reaction. J Supercrit Fluids 34:63–70

    Article  CAS  Google Scholar 

  • Miles TL, Moran TA, Payne RE (1996) Success comes in cans: solid waste management for NSSN. Nav Eng J 108(3):217–232

    Article  Google Scholar 

  • Mitton DB, Yoon JH, Cline JA, Kim HS, Eliaz N, Latanision RM (2000) Corrosion behavior of nickel-based alloys in supercritical water oxidation systems. Ind Eng Chem Res 39:4689–4696

    Article  CAS  Google Scholar 

  • Modell M (1989a) Supercritical water oxidation. In: Freeman HM (ed) Standard handbook of hazardous waste treatment and disposal. McGraw Hill, New York, pp 8.153–8.168

    Google Scholar 

  • Modell M (1989b) Standard handbook of hazardous waste treatment and disposal. McGraw-Hill, New York

    Google Scholar 

  • Oshima Y, Tomita K, Koda S (1999) Kinetics of the catalytic oxidation of phenol over manganese oxide in supercritical water. Ind Eng Chem Res 38:4183–4188

    Article  CAS  Google Scholar 

  • Pisharody SA, Fisher JW, Abraham MA (1996) Supercritical water oxidation of solid particulates. Ind Eng Chem Res 35:4471–4478

    Article  CAS  Google Scholar 

  • Polglaze J (2003) Can we always ignore ship-generated food waste? Mar Pollut Bull 46:33–38

    Article  CAS  Google Scholar 

  • Portela JR, López J, de la Ossa EM (2001) Elimination of cutting oil wastes by promoted hydrothermal oxidation. J Hazard Mater B 88:95

    Article  Google Scholar 

  • Sanchez-Oneto J, Mancini F, Portela JR, Nebort E, Cansell F, Martinez de la Ossa EJ (2008) Kinetic model for oxygen concentration dependence in the supercritical water oxidation of an industrial wastewater. Chem Eng J 144(3):361–367

    Article  CAS  Google Scholar 

  • Savage PE, Gopalan S, Mizan TI, Martino CJ, Brock EE (1995) Reactions at supercritical conditions: applications and fundamentals. AICHE J 41:1723

    Article  CAS  Google Scholar 

  • Takahashi Y, Wydeven T, Koo C (1989) Subcritical and supercritical water oxidation of CELSS model wastes. Adv Space Res 9(8):99–110

    Article  CAS  Google Scholar 

  • Tan L, Ren X, Allen TR (2010) Corrosion behavior of 9–12 % Cr ferritic-martensitic steels in supercritical water. Corros Sci 52:1520–1528

    Article  CAS  Google Scholar 

  • Tester JW et al (1993) Supercritical water oxidation technology-process-development and fundamental research. ACS Symp Ser 518:35–76

    Article  CAS  Google Scholar 

  • Thornton TD, Savage PE (1992) Kinetics of phenol oxidation in supercritical water. AIChE J 38:321–327

    Article  CAS  Google Scholar 

  • Veriansyah B, Kim J-D, Lee J-C (2009) A double wall reactor for supercritical water oxidation: experimental results on corrosive sulfur mustard simulant oxidation. J Ind Eng Chem 15:153–156

    Article  CAS  Google Scholar 

  • Wellig B, Lieball K, Rudolf von Rohr P (2005) Operating characteristics of a transpiring-wall SCWO reactor with a hydrothermal flame as internal heat source. J Supercrit Fluids 34:35–50

    Article  CAS  Google Scholar 

  • Xin D, Zhang R, Gan Z, Bi J (2013) Treatment of high strength coking wastewater by supercritical water oxidation. Fuel 104:77–82

    Article  Google Scholar 

  • Xu DH, Wang SZ, Gong YM, Guo Y, Tang XY, Ma HH (2010) A novel concept reactor design for preventing salt deposition in supercritical water. Chem Eng Res Des 88:1515–1522

    Article  CAS  Google Scholar 

  • Zou YF, Wang SZ, Zhang QM, Duan BQ, Shen LH, Lin ZH (2005) Study on kinetics of supercritical water oxidation of municipal sludge. J Xi’an Jiao Tong Univ 39:104

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shiying Chen or Jicheng Bi.

Additional information

Responsible editor: Angeles Blanco

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, S., Qu, X., Zhang, R. et al. Destruction of representative submarine food waste using supercritical water oxidation. Environ Sci Pollut Res 22, 4527–4533 (2015). https://doi.org/10.1007/s11356-014-3689-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-014-3689-7

Keywords

Navigation