Skip to main content

Advertisement

Log in

Effect of operation conditions on fuel characteristics of hydrochar via hydrothermal carbonization of agroforestry biomass

  • Original Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

Hydrothermal carbonization (HTC) of agroforestry biomass involving poplar wood (PW) and corn stalk (CS) was carried out in a multifunction reactor. The effects of reaction temperature, holding time, and initial pressure on the evolution of proximate analysis parameters, element composition, mass yield, energy yield, and major chemical components in both hydrochars were analyzed. The obtained results indicated that hydrothermal carbonization has a significant influence on the fuel properties of hydrochars. The impact of HTC operating parameters is ordered as reaction temperature >  > holding time > initial pressure, and high initial pressure is helpful for the acceleration of the reaction rate of the HTC process. As reaction temperature increases from 180 to 260 °C, there is a significant decrease in volatile matter, mass yield, energy yield, atomic ratios of H/C and O/C, and element yield efficiency of hydrochars, but an obvious increase in fixed carbon, higher heating value, and energy enhancement factor of hydrochars. The hemicellulose decomposition coefficients of CS and PW hydrochars reach 62.7–68.4% at 180 °C and gradually stabilize at approximately 93% and 75% while reaction temperature is larger than 220 °C. The corresponding cellulose decomposition coefficients are relatively low at 180 °C, followed by a rapid increase, and achieve the maximum of 92.1–94.2% at 260 °C. The thermal sensitivity of agricultural biomass is stronger than that of forestry biomass as the severity of HTC treatment, and an optimal HTC operation parameter should be adopted to improve fuel performances of agroforestry.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

HTC:

Hydrothermal carbonization

PW:

Poplar wood

CS:

Corn stalk

HHV:

Higher heating value

VM:

Volatile matter

FC:

Fixed carbon

M:

Moisture

A:

Ash

NDF:

Neutral detergent fiber

ADF:

Acid detergent fiber

ADL:

Acid detergent lignin

R h :

Hemicellulose content, wt%

R c :

Cellulose content, wt%

R l :

Lignin content, wt%

R e :

Extraction content, wt%

η m :

Mass yield, %

λ HHV :

Energy enhancement factor, %

λ d :

Component decomposition coefficient, %

Δλ :

Energy enhancement factor difference

η e :

Energy yield, %

η r :

Relative reduction, %

η C :

Carbon element yield efficiency, %

η H :

Hydrogen element yield efficiency, %

η O :

Oxygen element yield efficiency,

References

  1. Torres-Mayanga PC, Lachos-Perez D, Mudhoo A, Kumar S, Brown AB, Tyufekchiev M, Dragone G, Mussatto SI, Rostagno MA, Timko M, Forster-Carneiro T (2019) Production of biofuel precursors and value-added chemicals from hydrolysates resulting from hydrothermal processing biomass: a review. Biomass Bioenerg 130:25. https://doi.org/10.1016/j.biombioe.2019.105397

    Article  Google Scholar 

  2. Banja M, Sikkema R, Jegard M, Motola V, Dallemand JF (2019) Biomass for energy in the EU - the support framework. Energy Policy 131:215–228. https://doi.org/10.1016/j.enpol.2019.04.038

    Article  Google Scholar 

  3. Kline KL, Msangi S, Dale VH, Woods J, Souza GM, Osseweijer P, Clancy JS, Hilbert JA, Johnson FX, McDonnell PC, Mugera HK (2017) Reconciling food security and bioenergy: priorities for action. GCB Bioenergy 9(3):557–576. https://doi.org/10.1111/gcbb.12366

    Article  Google Scholar 

  4. Zhu X, Liu Y, Qian F, Zhou C, Zhang S, Chen J (2015) Role of hydrochar properties on the porosity of hydrochar-based porous carbon for their sustainable application. Acs Sustainable Chemistry & Engineering 3(5):833–840. https://doi.org/10.1021/acssuschemeng.5b00153

    Article  Google Scholar 

  5. Titirici M-M, White RJ, Falco C, Sevilla M (2012) Black perspectives for a green future: hydrothermal carbons for environment protection and energy storage. Energy Environ Sci 5(5):6796–6822. https://doi.org/10.1039/c2ee21166a

    Article  Google Scholar 

  6. Sharma HK, Xu CB, Qin WS (2019) Biological pretreatment of lignocellulosic biomass for biofuels and bioproducts: an overview. Waste Biomass Valorization 10(2):235–251. https://doi.org/10.1007/s12649-017-0059-y

    Article  Google Scholar 

  7. Correa DF, Beyer HL, Fargione JE, Hill JD, Possingham HP, Thomas-Hall SR, Schenk PM (2019) Towards the implementation of sustainable biofuel production systems. Renew Sust Energ Rev 107:250–263. https://doi.org/10.1016/j.rser.2019.03.005

    Article  Google Scholar 

  8. Kan T, Strezov V, Evans TJ (2016) Lignocellulosic biomass pyrolysis: a review of product properties and effects of pyrolysis parameters. Renew Sust Energ Rev 57:1126–1140. https://doi.org/10.1016/j.rser.2015.12.185

    Article  Google Scholar 

  9. Mathimani T, Mallick N (2019) A review on the hydrothermal processing of microalgal biomass to bio-oil - knowledge gaps and recent advances. J Clean Prod 217:69–84. https://doi.org/10.1016/j.jclepro.2019.01.129

    Article  Google Scholar 

  10. Kruse A, Funke A, Titirici MM (2013) Hydrothermal conversion of biomass to fuels and energetic materials. Curr Opin Chem Biol 17(3):515–521. https://doi.org/10.1016/j.cbpa.2013.05.004

    Article  Google Scholar 

  11. Funke A, Ziegler F (2010) Hydrothermal carbonization of biomass: a summary and discussion of chemical mechanisms for process engineering. Biofuels Bioprod Biorefining 4(2):160–177. https://doi.org/10.1002/bbb.198

    Article  Google Scholar 

  12. Fang J, Zhan L, Ok YS, Gao B (2018) Minireview of potential applications of hydrochar derived from hydrothermal carbonization of biomass. J Ind Eng Chem 57:15–21. https://doi.org/10.1016/j.jiec.2017.08.026

    Article  Google Scholar 

  13. Stemann J, Putschew A, Ziegler F (2013) Hydrothermal carbonization: process water characterization and effects of water recirculation. Bioresour Technol 143:139–146. https://doi.org/10.1016/j.biortech.2013.05.098

    Article  Google Scholar 

  14. Shen YF (2020) A review on hydrothermal carbonization of biomass and plastic wastes to energy products. Biomass Bioenerg 134:18. https://doi.org/10.1016/j.biombioe.2020.105479

    Article  Google Scholar 

  15. Kumar M, Oyedun AO, Kumar A (2018) A review on the current status of various hydrothermal technologies on biomass feedstock. Renew Sust Energ Rev 81:1742–1770. https://doi.org/10.1016/j.rser.2017.05.270

    Article  Google Scholar 

  16. Reza MT, Andert J, Wirth B, Busch D, Pielert J, Lynam JG, Mumme J (2014) Hydrothermal carbonization of biomass for energy and crop production. Applied Bioenergy 1:11–29. https://doi.org/10.2478/apbi-2014-0001

    Article  Google Scholar 

  17. Mazumder S, Saha P, Reza MT (2020) Co-hydrothermal carbonization of coal waste and food waste: fuel characteristics. Biomass Conversion and Biorefinery. https://doi.org/10.1007/s13399-020-00771-5

    Article  Google Scholar 

  18. Heidari M, Dutta A, Acharya B, Mahmud S (2019) A review of the current knowledge and challenges of hydrothermal carbonization for biomass conversion. J Energy Inst 92(6):1779–1799. https://doi.org/10.1016/j.joei.2018.12.003

    Article  Google Scholar 

  19. Dieguez-Alonso A, Funke A, Anca-Couce A, Rombola AG, Ojeda G, Bachmann J, Behrendt F (2018) Towards biochar and hydrochar engineering-influence of process conditions on surface physical and chemical properties, thermal stability, nutrient availability, toxicity and wettability. Energies 11(3):26. https://doi.org/10.3390/en11030496

    Article  Google Scholar 

  20. Wilk M, Magdziarz A, Kalemba-Rec I, Szymańska-Chargot M (2020) Upgrading of green waste into carbon-rich solid biofuel by hydrothermal carbonization: the effect of process parameters on hydrochar derived from acacia. Energy 202:117717. https://doi.org/10.1016/j.energy.2020.117717

    Article  Google Scholar 

  21. Tekin K, Karagoz S (2013) Non-catalytic and catalytic hydrothermal liquefaction of biomass. Res Chem Intermed 39(2):485–498. https://doi.org/10.1007/s11164-012-0572-3

    Article  Google Scholar 

  22. Wang TF, Zhai YB, Zhu Y, Li CT, Zeng GM (2018) A review of the hydrothermal carbonization of biomass waste for hydrochar formation: process conditions, fundamentals, and physicochemical properties. Renew Sust Energ Rev 90:223–247. https://doi.org/10.1016/j.rser.2018.03.071

    Article  Google Scholar 

  23. Bach QV, Skreiberg O (2016) Upgrading biomass fuels via wet torrefaction: a review and comparison with dry torrefaction. Renew Sust Energ Rev 54:665–677. https://doi.org/10.1016/j.rser.2015.10.014

    Article  Google Scholar 

  24. Acharya B, Dutta A, Minaret J (2015) Review on comparative study of dry and wet torrefaction. Sustain Energy Technol Assess 12:26–37. https://doi.org/10.1016/j.seta.2015.08.003

    Article  Google Scholar 

  25. Wang S, Dai G, Yang H, Luo Z (2017) Lignocellulosic biomass pyrolysis mechanism: a state-of-the-art review. Prog Energy Combust Sci 62:33–86. https://doi.org/10.1016/j.pecs.2017.05.004

    Article  Google Scholar 

  26. Wen JL, Sun SL, Yuan TQ, Xu F, Sun RC (2014) Understanding the chemical and structural transformations of lignin macromolecule during torrefaction. Appl Energy 121:1–9. https://doi.org/10.1016/j.apenergy.2014.02.001

    Article  Google Scholar 

  27. Vassilev SV, Baxter D, Andersen LK, Vassileva CG (2013) An overview of the composition and application of biomass ash. Part 1. Phase-mineral and chemical composition and classification, Fuel 105:40–76. https://doi.org/10.1016/j.fuel.2012.09.041

    Article  Google Scholar 

  28. Naderi M, Vesali-Naseh M (2019) Hydrochar-derived fuels from waste walnut shell through hydrothermal carbonization: characterization and effect of processing parameters. Biomass Conversion and Biorefinery 11:1443–1451. https://doi.org/10.1007/s13399-019-00513-2

    Article  Google Scholar 

  29. Sharma HB, Sarmah AK, Dubey B (2020) Hydrothermal carbonization of renewable waste biomass for solid biofuel production: a discussion on process mechanism, the influence of process parameters, environmental performance and fuel properties of hydrochar. Renew Sustain Energy Rev 123:109761. https://doi.org/10.1016/j.rser.2020.109761

    Article  Google Scholar 

  30. Sun X, Atiyeh HK, Li M, Chen Y (2020) Biochar facilitated bioprocessing and biorefinery for productions of biofuel and chemicals: a review. Biores Technol 295:122252. https://doi.org/10.1016/j.biortech.2019.122252

    Article  Google Scholar 

  31. Poomsawat S, Poomsawat W (2021) Analysis of hydrochar fuel characterization and combustion behavior derived from aquatic biomass via hydrothermal carbonization process. Case Studies in Thermal Engineering 27:101255. https://doi.org/10.1016/j.csite.2021.101255

    Article  Google Scholar 

  32. Lynam JG, Reza MT, Yan W, Vásquez VR, Coronella CJ (2015) Hydrothermal carbonization of various lignocellulosic biomass. Biomass Conversion and Biorefinery 5(2):173–181. https://doi.org/10.1007/s13399-014-0137-3

    Article  Google Scholar 

  33. Surendra KC, Ogoshi R, Zaleski HM, Hashimoto AG, Khanal SK (2018) High yielding tropical energy crops for bioenergy production: effects of plant components, harvest years and locations on biomass composition. Bioresour Technol 251:218–229. https://doi.org/10.1016/j.biortech.2017.12.044

    Article  Google Scholar 

  34. Souza EJ, Guim A, Batista AMV, Santos KL, Silva JR, Morais NAP, Mustafa AF (2009) Effects of soybean hulls inclusion on intake, total tract nutrient utilization and ruminal fermentation of goats fed spineless cactus (Opuntia ficus-indica Mill) based diets. Small Rumin Res 85(1):63–69. https://doi.org/10.1016/j.smallrumres.2009.07.008

    Article  Google Scholar 

  35. Bach QV, Tran KQ, Khalil RA, Skreiberg O, Seisenbaeva G (2013) Comparative assessment of wet torrefaction. Energy Fuels 27(11):6743–6753. https://doi.org/10.1021/ef401295w

    Article  Google Scholar 

  36. Yan W, Acharjee TC, Coronella CJ, Vasquez VR (2009) Thermal pretreatment of lignocellulosic biomass. Environ Prog Sustain Energy 28(3):435–440. https://doi.org/10.1002/ep.10385

    Article  Google Scholar 

  37. Khan TA, Saud AS, Jamari SS, Ab Rahim MH, Park JW, Kim HJ (2019) Hydrothermal carbonization of lignocellulosic biomass for carbon rich material preparation: a review. Biomass Bioenerg 130:16. https://doi.org/10.1016/j.biombioe.2019.105384

    Article  Google Scholar 

  38. Kang SM, Li XH, Fan J, Chang J (2012) Characterization of hydrochars produced by hydrothermal carbonization of lignin, cellulose, D-xylose, and wood meal. Ind Eng Chem Res 51(26):9023–9031. https://doi.org/10.1021/ie300565d

    Article  Google Scholar 

  39. Hashaikeh R, Fang Z, Butler IS, Hawari J, Kozinski JA (2007) Hydrothermal dissolution of willow in hot compressed water as a model for biomass conversion. Fuel 86(10–11):1614–1622. https://doi.org/10.1016/j.fuel.2006.11.005

    Article  Google Scholar 

  40. Falco C, Baccile N, Titirici MM (2011) Morphological and structural differences between glucose, cellulose and lignocellulosic biomass derived hydrothermal carbons. Green Chem 13(11):3273–3281. https://doi.org/10.1039/c1gc15742f

    Article  Google Scholar 

  41. Samaksaman U, Pattaraprakorn W, Neramittagapong A, Kanchanatip E (2021) Solid fuel production from macadamia nut shell: effect of hydrothermal carbonization conditions on fuel characteristics. Biomass Conversion and Biorefinery. https://doi.org/10.1007/s13399-021-01330-2

    Article  Google Scholar 

  42. Tekin K, Karagoz S, Bektas S (2014) A review of hydrothermal biomass processing. Renew Sust Energ Rev 40:673–687. https://doi.org/10.1016/j.rser.2014.07.216

    Article  Google Scholar 

  43. Fuertes AB, Arbestain MC, Sevilla M, Macia-Agullo JA, Fiol S, Lopez R, Smernik RJ, Aitkenhead WP, Arce F, Macias F (2010) Chemical and structural properties of carbonaceous products obtained by pyrolysis and hydrothermal carbonisation of corn stover. Aust J Soil Res 48(6–7):618–626. https://doi.org/10.1071/sr10010

    Article  Google Scholar 

  44. Mendoza Martinez CL, Sermyagina E, Saari J, Silva de Jesus M, Cardoso M, Matheus de Almeida G, Vakkilainen E (2021) Hydrothermal carbonization of lignocellulosic agro-forest based biomass residues. Biomass Bioenergy 147:106004. https://doi.org/10.1016/j.biombioe.2021.106004

    Article  Google Scholar 

  45. Hoekman SK, Broch A, Robbins C (2011) Hydrothermal carbonization (HTC) of lignocellulosic biomass. Energy Fuels 25(4):1802–1810. https://doi.org/10.1021/ef101745n

    Article  Google Scholar 

  46. Benavente V, Calabuig E, Fullana A (2015) Upgrading of moist agro-industrial wastes by hydrothermal carbonization. J Anal Appl Pyrolysis 113:89–98. https://doi.org/10.1016/j.jaap.2014.11.004

    Article  Google Scholar 

  47. Mihajlović M, Petrović J, Maletić S, Isakovski MK, Stojanović M, Lopičić Z, Trifunović S (2018) Hydrothermal carbonization of Miscanthus × giganteus: structural and fuel properties of hydrochars and organic profile with the ecotoxicological assessment of the liquid phase. Energy Convers Manage 159:254–263. https://doi.org/10.1016/j.enconman.2018.01.003

    Article  Google Scholar 

  48. Sevilla M, Fuertes AB (2009) The production of carbon materials by hydrothermal carbonization of cellulose. Carbon 47(9):2281–2289. https://doi.org/10.1016/j.carbon.2009.04.026

    Article  Google Scholar 

  49. Bobleter O (1994) Hydrothermal degradation of polymers derived from plants. Prog Polym Sci 19(5):797–841. https://doi.org/10.1016/0079-6700(94)90033-7

    Article  Google Scholar 

Download references

Funding

This study was financially supported by the National Natural Science Foundation of China (51476079) and the Natural Science Foundation for Young Scientists of Jiangsu Province (Grant No. BK20190708).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ping Lu.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Lu, P., Chen, D. et al. Effect of operation conditions on fuel characteristics of hydrochar via hydrothermal carbonization of agroforestry biomass. Biomass Conv. Bioref. 13, 11891–11903 (2023). https://doi.org/10.1007/s13399-021-02003-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13399-021-02003-w

Keywords

Navigation