Skip to main content
Log in

Treating maize plants with benzohydrazide increases saccharification of lignocellulose: A non-transgenic approach to improve cellulosic ethanol production

  • Original Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

Cellulosic ethanol production will decrease our dependence on fossil fuels, positively impacting global warming, energy security, and urban pollution. In the last few years, our group has screened a few enzyme inhibitors of the phenylpropanoid pathway. We have shown that when some enzyme inhibitors are sprayed in young plants, they increase the lignocellulose saccharification in the long term at the workbench scale. Here, we screened five aromatic compounds for their ability to improve the saccharification of maize plants. Benzohydrazide increased saccharification in a broad range of concentrations in growth-room experiments, and it was selected for field-scale assays. At 20 g ha−1 (500 μM, 300 L ha−1), benzohydrazide increased by 33 and 46%, respectively, the saccharification of lignocellulose from maize leaves and stems. When the lignocellulose biomass of maize plants, sprayed with benzohydrazide or not, was submitted to hydrogen peroxide–acetic acid delignification pretreatment, benzohydrazide increased the saccharification by up to 76%. Benzohydrazide did not significantly affect any other biometric (length or fresh and dry weights) or biochemical (lignin, monolignols, structural hydroxycinnamates) parameters assessed. In brief, benzohydrazide could be used to improve saccharification in agroenergy crops.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

Not applicable.

Code availability

Not applicable.

References

  1. Marriott PE, Gómez LD, McQueen-Mason SJ (2016) Unlocking the potential of lignocellulosic biomass through plant science. New Phytol 209:1366–1381. https://doi.org/10.1111/nph.13684

    Article  Google Scholar 

  2. Reid WV, Ali MK, Field CB (2020) The future of bioenergy. Glob Chang Biol 26:274–286. https://doi.org/10.1111/gcb.14883

    Article  Google Scholar 

  3. Machineni L (2020) Lignocellulosic biofuel production: review of alternatives. Biomass Convers Biorefi 10:779–879. https://doi.org/10.1007/s13399-019-00445-x

    Article  Google Scholar 

  4. Marchiosi R, dos Santos WD, Constantin RP, de Lima RB, Soares AR, Finger-Teixeira A, Mota TR, Oliveira DM, Foletto-Felipe MP, Abrahão J, Ferrarese-Filho O (2020) Biosynthesis and metabolic actions of simple phenolic acids in plants. Phytochem Rev 19:865–906. https://doi.org/10.1007/s11101-020-09689-2

    Article  Google Scholar 

  5. Martarello DCI, Almeida AM, Sinzker RC, Oliveira DM, Marchiosi R, dos Santos WD, Ferrarese-Filho O (2021) The known unknowns in lignin biosynthesis and its engineering to improve lignocellulosic saccharification efficiency. Biomass Convers Biorefi. https://doi.org/10.1007/s13399-021-01291-6

    Article  Google Scholar 

  6. Van Acker R, Déjardin A, Desmet S, Hoengenaert L, Vanholme R, Morreel K, Laurans F, Kim H, Santoro N, Foster C, Goeminne G, Légée F, Lapierre C, Pilate G, Ralph J, Boerjan W (2017) Different routes for conifer- and sinapaldehyde and higher saccharification upon deficiency in the dehydrogenase CAD1. Plant Physiol 175:1018–1039. https://doi.org/10.1104/pp.17.00834

    Article  Google Scholar 

  7. Alvira P, Tomás-Pejó E, Ballesteros M, Negro MJ (2010) Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: a review. Bioresour Technol 101:4851–4861. https://doi.org/10.1016/j.biortech.2009.11.093

    Article  Google Scholar 

  8. Mota TR, Oliveira DM, Marchiosi R, Ferrarese-Filho O, dos Santos WD (2018) Plant cell wall composition and enzymatic deconstruction. AIMS Bioeng 5:63–77. https://doi.org/10.3934/bioeng.2018.1.63

    Article  Google Scholar 

  9. Kumar A, Anushree J, Kumar T (2020) Bhaskar, Utilization of lignin: a sustainable and eco-friendly approach. J Energy Inst 93:235–271. https://doi.org/10.1016/j.joei.2019.03.005

    Article  Google Scholar 

  10. Simmons BA, Loqué D, Ralph J (2010) Advances in modifying lignin for enhanced biofuel production. Curr Opin Plant Biol 13:312–319. https://doi.org/10.1016/j.pbi.2010.03.001

    Article  Google Scholar 

  11. de Souza WR, Martins PK, Freeman J, Pellny TK, Michaelson LV, Sampaio BL, Vinecky F, Ribeiro AP, da Cunha BADB, Kobayashi AK, de Oliveira PA, Campanha RB, Pacheco TF, Martarello DCI, Marchiosi R, Ferrarese-Filho O, dos Santos WD, Tramontina R, Squina FM, Centeno DC, Gaspar M, Braga MR, Tiné MAS, Ralph J, Mitchell RAC, Molinari HBC (2018) Suppression of a single BAHD gene in Setaria viridis causes large, stable decreases in cell wall feruloylation and increases biomass digestibility. New Phytol 218:81–93. https://doi.org/10.1111/nph.14970

    Article  Google Scholar 

  12. Ralph J, Lapierre C, Boerjan W (2019) Lignin structure and its engineering. Curr Opin Biotechnol 56:240–249. https://doi.org/10.1016/j.copbio.2019.02.019

    Article  Google Scholar 

  13. Mota TR, de Souza WR, Oliveira DM, Martins PK, Sampaio BL, Vinecky F, Ribeiro AP, Duarte KE, Pacheco TF, N de Monteiro KV, Campanha RB, Marchiosi R, Vieira DS, Kobayashi AK, Molinari PADO, Ferrarese-Filho O, Mitchell RAC, Molinari HBC, dos Santos WD (2021) Suppression of a BAHD acyltransferase decreases p-coumaroyl on arabinoxylan and improves biomass digestibility in the model grass Setaria viridis. Plant J 105:136–150. https://doi.org/10.1111/tpj.15046

  14. Prasad A, Sotenko M, Blenkinsopp T, Coles SR (2016) Life cycle assessment of lignocellulosic biomass pretreatment methods in biofuel production. Int J Life Cycle Assess 21:44–50. https://doi.org/10.1007/s11367-015-0985-5

    Article  Google Scholar 

  15. Wang Y, Fan C, Hu H, Li Y, Sun D, Wang Y, Peng L (2016) Genetic modification of plant cell walls to enhance biomass yield and biofuel production in bioenergy crops. Biotechnol Adv 34:997–1017. https://doi.org/10.1016/j.biotechadv.2016.06.001

    Article  Google Scholar 

  16. Bevilaqua JM, Finger-Teixeira A, Marchiosi R, de Oliveira DM, Joia BM, Ferro AP, Parizotto AV, dos Santos WD, Ferrarese-Filho O (2019) Exogenous application of rosmarinic acid improves saccharification without affecting growth and lignification of maize. Plant Physiol Biochem 142:275–282. https://doi.org/10.1016/j.plaphy.2019.07.015

    Article  Google Scholar 

  17. Parizotto AV, Ferro AP, Marchiosi R, Moreira-Vilar FC, Bevilaqua JM, dos Santos WD, Seixas FAV, Ferrarese-Filho O (2020) Entacapone improves saccharification without affecting lignin and maize growth: an in silico, in vitro, and in vivo approach. Plant Physiol Biochem 151:421–428. https://doi.org/10.1016/j.plaphy.2020.03.053

    Article  Google Scholar 

  18. Parizotto AV, Ferro AP, Marchiosi R, Finger-Teixeira A, Bevilaqua JM, dos Santos WD, Seixas FAV, Ferrarese-Filho O (2021) Inhibition of maize caffeate 3-O-methyltransferase by nitecapone as a possible approach to reduce lignocellulosic biomass recalcitrance. Plant Mol Biol Report 39:179–191. https://doi.org/10.1007/s11105-020-01242-x

    Article  Google Scholar 

  19. Ferro AP, Flores Júnior R, Finger-Teixeira A, Parizotto AV, Bevilaqua JM, Oliveira DM, Molinari HBC, Marchiosi R, dos Santos WD, Seixas FAV, Ferrarese-Filho O (2020) Inhibition of Zea mays coniferyl aldehyde dehydrogenase by daidzin: a potential approach for the investigation of lignocellulose recalcitrance. Process Biochem 90:131–138. https://doi.org/10.1016/j.procbio.2019.11.024

  20. Ferro AP, Parizotto AV, dos Santos WD, Marchiosi R, Seixas FAV, Ferrarese-Filho O (2020) Naringin inhibits the Zea mays coniferyl aldehyde dehydrogenase: an in silico and in vitro approach. J Plant Biochem Biotechnol 29:484–493. https://doi.org/10.1007/s13562-020-00561-0

    Article  Google Scholar 

  21. dos Santos WD, Buckeridge MS (2018) Processo para aumentar a digestibilidade da parede celular de uma planta e uso de inibidores químicos em enzimas constituintes da via dos fenilpropanoides para aumentar a digestibilidade da parede celular de uma planta. PI 1104756–9

  22. Manikandan R, Viswanathamurthi P, Muthukumar M (2011) Ruthenium(II) hydrazone Schiff base complexes: synthesis, spectral study and catalytic applications, Spectrochim. Acta - Part A Mol Biomol Spectrosc 83:297–303. https://doi.org/10.1016/j.saa.2011.08.033

    Article  Google Scholar 

  23. Hussain I, Ali A (2017) Exploring the pharmacological activities of hydrazone derivatives : a review. J Phytochem Biochem 1:104

    Google Scholar 

  24. Sampiron EG, Costacurta GF, Baldin VP, Almeida AL, Ieque AL, Santos NCS, Alves-Olher VG, Vandresen F, Gimenes ACR, Siqueira VLD, Caleffi-Ferracioli KR, Cardoso RF, Scodro RBL (2019) Hydrazone, benzohydrazones and isoniazid-acylhydrazones as potential antituberculosis agents. Future Microbiol 14:981–994. https://doi.org/10.2217/fmb-2019-0040

    Article  Google Scholar 

  25. Tsukamoto M, Read M (2005) Novel benzohydrazide derivatives as herbicides and desiccant compositions containing them. https://patents.google.com/patent/US20040018942

  26. Reis SLGB, Almeida VM, Almeida GC, Boaviagem KM, Mendes CCDB, Faria AR, Góes AJS, Magalhães LR, Silva TG (2011) Síntese e avaliação preliminar da atividade antinociceptiva de novas isoxazolil-aril-hidrazonas. Quim Nova 34:76–81. https://doi.org/10.1590/S0100-40422011000100015

  27. Hoagland DR, Arnon DI (1950) The water-culture method for growing plants without soil. Calif Agric Exp Stn Circ 347:1–32

  28. Dubois M, Gilles KA, Hamilton JK, Rebers PA, Smith F (1956) Colorimetric method for determination of sugars and related substances. Anal Chem 28:350–356. https://doi.org/10.1021/ac60111a017

    Article  Google Scholar 

  29. Miller GL (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem 31:426–428. https://doi.org/10.1021/ac60147a030

    Article  Google Scholar 

  30. Mota TR, Oliveira DM, Morais GR, Marchiosi R, Buckeridge MS, Ferrarese-Filho O, dos Santos WD (2019) Hydrogen peroxide-acetic acid pretreatment increases the saccharification and enzyme adsorption on lignocellulose. Ind Crops Prod 140:111657. https://doi.org/10.1016/j.indcrop.2019.111657

    Article  Google Scholar 

  31. Moreira-Vilar FC, Siqueira-Soares RdC, Finger-Teixeira A, Oliveira DMd, Ferro AP, da Rocha GJ et al (2014) The acetyl bromide method is faster, simpler and presents best recovery of lignin in different herbaceous tissues than klason and thioglycolic acid methods. PLoS ONE 9(10):e110000. https://doi.org/10.1371/journal.pone.0110000.

  32. de Ascensao ARFDC, Dubery IA (2003) Soluble and wall-bound phenolics and phenolic polymers in Musa acuminata roots exposed to elicitors from Fusarium oxysporum f.sp. cubense. Phytochemistry 63:679–686. https://doi.org/10.1016/S0031-9422(03)00286-3

  33. Van Acker R, Vanholme R, Storme V, Mortimer JC, Dupree P, Boerjan W (2013) Lignin biosynthesis perturbations affect secondary cell wall composition and saccharification yield in Arabidopsis thaliana. Biotechnol Biofuels 6:46. https://doi.org/10.1186/1754-6834-6-46

    Article  Google Scholar 

  34. Sykes RW, Gjersing EL, Foutz K, Rottmann WH, Kuhn SA, Foster CE, Ziebell A, Turner GB, Decker SR, Hinchee MAW, Davis MF (2015) Down-regulation of p-coumaroyl quinate/shikimate 3′-hydroxylase (C3′H) and cinnamate 4-hydroxylase (C4H) genes in the lignin biosynthetic pathway of Eucalyptus urophylla x E. grandis leads to improved sugar release. Biotechnol Biofuels 8:128. https://doi.org/10.1186/s13068-015-0316-x

  35. Gallego-Giraldo L, Shadle G, Shen H, Barros-Rios J, Corrales SF, Wang H, Dixon RA (2016) Combining enhanced biomass density with reduced lignin level for improved forage quality. Plant Biotechnol J 14:895–904. https://doi.org/10.1111/pbi.12439

  36. Jung JH, Kannan B, Dermawan H, Moxley GW, Altpeter F (2016) Precision breeding for RNAi suppression of a major 4-coumarate:coenzyme A ligase gene improves cell wall saccharification from field grown sugarcane. Plant Mol Biol 92:505–517. https://doi.org/10.1007/s11103-016-0527-y

    Article  Google Scholar 

  37. Takeda Y, Tobimatsu Y, Karlen SD, Koshiba T, Suzuki S, Yamamura M, Murakami S, Mukai M, Hattori T, Osakabe K, Ralph J, Sakamoto M, Umezawa T (2018) Downregulation of p-COUMAROYL ESTER 3-HYDROXYLASE in rice leads to altered cell wall structures and improves biomass saccharification. Plant J 95:796–811. https://doi.org/10.1111/tpj.13988

    Article  Google Scholar 

  38. Arnold AM, Cassida KA, Albrecht KA, Hall MH, Min D, Xu X, Orloff S, Undersander DJ, Van Santengan E (2019) Multistate evaluation of reduced-lignin alfalfa harvested at different intervals. Crop Sci 59:1799–1807. https://doi.org/10.2135/cropsci2019.01.0023

    Article  Google Scholar 

  39. de O. Buanafina MM, Buanafina MF, Dalton S, Morris P, Kowalski M, Yadav MK et al (2020) Probing the role of cell wall feruloylation during maize development by differential expression of an apoplast targeted fungal ferulic acid esterase. PLoS ONE 15(10):e0240369. https://doi.org/10.1371/journal.pone.0240369

  40. Fornalé S, Rencoret J, Garcia-Calvo L, Capellades M, Encina A, Santiago R, Rigau J, Gutiérrez A, del Río JC, Caparros-Ruiz D (2015) Cell wall modifications triggered by the down-regulation of coumarate 3-hydroxylase-1 in maize. Plant Sci 236:272–282. https://doi.org/10.1016/j.plantsci.2015.04.007

    Article  Google Scholar 

  41. Tan H, Yang R, Sun W, Wang S (2010) Peroxide-acetic acid pretreatment to remove bagasse lignin prior to enzymatic hydrolysis. Ind Eng Chem Res 49:1473–1479. https://doi.org/10.1021/ie901529q

    Article  Google Scholar 

  42. Wi SG, Cho EJ, Lee DS, Lee SJ, Lee YJ, Bae HJ (2015) Lignocellulose conversion for biofuel: a new pretreatment greatly improves downstream biocatalytic hydrolysis of various lignocellulosic materials. Biotechnol Biofuels 8:288. https://doi.org/10.1186/s13068-015-0419-4

    Article  Google Scholar 

  43. Chen F, Dixon RA (2007) Lignin modification improves fermentable sugar yields for biofuel production. Nat Biotechnol 25:759–761. https://doi.org/10.1038/nbt1316

    Article  Google Scholar 

  44. Oliveira DM, Mota TR, Grandis A, de Morais GR, de Lucas RC, Polizeli MLTM, Marchiosi R, Buckeridge MS, Ferrarese-Filho O, dos Santos WD (2020) Lignin plays a key role in determining biomass recalcitrance in forage grasses. Renew Energy 147:2206–2217. https://doi.org/10.1016/j.renene.2019.10.020

    Article  Google Scholar 

  45. Calvo-Flores FG, Dobado JA, Isac-García J, Martín-Martínez FJ (2015) Lignin and lignans as renewable raw materials: chemistry, technology and applications. Wiley, Chichester

  46. Oliveira DM, Finger-Teixeira A, Rodrigues Mota T, Salvador VH, Moreira-Vilar FC, Correa Molinari HB, Craig Mitchell RA, Marchiosi R, Ferrarese-Filho O, Dantas dos Santos W (2015) Ferulic acid: a key component in grass lignocellulose recalcitrance to hydrolysis. Plant Biotechnol J. 13:1224–1232. https://doi.org/10.1111/pbi.12292

    Article  Google Scholar 

  47. Hatfield RD, Rancour DM, Marita JM (2017) Grass cell walls: a story of cross-linking. Front Plant Sci 7:2056. https://doi.org/10.3389/fpls.2016.02056

    Article  Google Scholar 

  48. Wang Y, Xu F, Yu G, Shi J, Li C, Dai A, Liu Z, Xu J, Wang F, Wu J (2017) Synthesis and insecticidal activity of diacylhydrazine derivatives containing a 3-bromo-1-(3-chloropyridin-2-yl)-1H-pyrazole scaffold. Chem Cent J 11:50. https://doi.org/10.1186/s13065-017-0279-z

  49. Hu Y, Li CY, Wang XM, Yang YH, Zhu HL (2014) 1,3,4-Thiadiazole: synthesis, reactions, and applications in medicinal, agricultural, and materials chemistry. Chem Rev 114:5572–5610. https://doi.org/10.1021/cr400131u

Download references

Funding

This study was financed by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior – Brasil (CAPES) – Finance Code 001; Instituto Nacional de Ciência e Tecnologia do Bioetanol (INCT Bioetanol); Araucaria Foundation (Grant number 013/2017 – PRONEX). D. C. I. Martarello and D. C. T Diniz thank CAPES for providing the scholarship. O. Ferrarese-Filho, R. Marchiosi, and W. D. dos Santos are research fellows of the National Council for Scientific and Technological Development (CNPq).

Author information

Authors and Affiliations

Authors

Contributions

W. D. dos Santos conceptualized the study together with D. C. I. Martarello and D. C. Tonete-Diniz. D. C. I. Martarello, A. M. Almeida, Rodrigo P. Constantin, and R. Marchiosi performed the growth-room experiments. D. C. Tonete-Diniz, D. E. R. Gonzaga, K. G. Silva, Renato P. Constantin, and F. A. Rios performed the field experiments. V. G. A. Olher synthesized the compounds (13). D. C. I. Martarello, D. C. Tonete-Diniz, O. Ferrarese-Filho, and W. D. dos Santos analyzed the data and co-wrote the manuscript. All authors revised and approved the final format of the manuscript.

Corresponding authors

Correspondence to Osvaldo Ferrarese-Filho or Wanderley Dantas dos Santos.

Ethics declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

• Aromatic compounds were screened for their ability to increase plant saccharification.

• Benzohydrazide, the best-scoring compound, was sprayed on 36-day-old maize crops.

• Treatments increased saccharification in mature harvested plants with no side effects.

• The treatment also boosted HPAC delignified biomass saccharification up to 76%.

• Results suggest that benzohydrazide can increase the production of cellulosic ethanol.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martarello, D.C.I., Tonete-Diniz, D.C., Gonzaga, D.E.R. et al. Treating maize plants with benzohydrazide increases saccharification of lignocellulose: A non-transgenic approach to improve cellulosic ethanol production. Biomass Conv. Bioref. 13, 9943–9954 (2023). https://doi.org/10.1007/s13399-021-01842-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13399-021-01842-x

Keywords

Navigation