Skip to main content
Log in

Phosphorus recovery by struvite from anaerobic co-digestion effluents during residual biomass treatment

  • Original Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

The residual biomass from agricultural activities has macronutrients and micronutrients, which could be recovered after an anaerobic co-digestion process. In this study, the effluents of the anaerobic co-digestion, which use coffee, cocoa mucilage, and pig manure, were evaluated to produce struvite. The effects of the Ca2+/PO43− ratio on the purity of struvite precipitation from synthetic and anaerobic co-digestion effluents was evaluated. The influence of pH, Ca2+/PO43− ration, and stirring speed on the efficiency of PO43− recovery and the removal of Ca2+ was studied. The phosphorus recovery increased from 85 to 99% with pH change from 8.5 to 10. The lowest removal of Ca2+ was 6.6% in the anaerobic effluent with the a ratio Ca2+/PO43− of 0.3:1 at pH 10. Struvite precipitate with high purity was obtained when the molar ratio was less than 0.3:1, and the pH was fixed to 10. X-ray diffraction analysis and scanning electron microscopy (SEM) confirmed the orthorhombic phases and morphology typical of struvite, respectively. In addition, the presence of K as a macronutrient and Ca and Na as micronutrients increases the viability of the struvite as fertilizer. The high recovery of phosphorus as struvite indicates it could be an alternative for nutrient recovery and utilization of these effluents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. EPA (2018) Livestock anaerobic digester database. In: Livest. Anaerob. Dig. Database. https://www.epa.gov/agstar/livestock-anaerobic-digester-database. Accessed 28 Aug 2018

  2. Moerman W, Carballa M, Vandekerckhove A, Derycke D, Verstraete W (2009) Phosphate removal in agro-industry: pilot- and full-scale operational considerations of struvite crystallization. Water Res 43:1887–1892. https://doi.org/10.1016/J.WATRES.2009.02.007

    Article  Google Scholar 

  3. Tao W, Fattah KP, Huchzermeier MP (2016) Struvite recovery from anaerobically digested dairy manure: a review of application potential and hindrances. J Environ Manag 169:46–57. https://doi.org/10.1016/J.JENVMAN.2015.12.006

    Article  Google Scholar 

  4. Cordell D, Rosemarin A, Schröder JJ, Smit AL (2011) Towards global phosphorus security: a systems framework for phosphorus recovery and reuse options. Chemosphere 84:747–758. https://doi.org/10.1016/j.chemosphere.2011.02.032

    Article  Google Scholar 

  5. Zhou X, Li Z, Zheng T, Yan Y, Li P, Odey EA, Mang HP, Uddin SMN (2018) Review of global sanitation development. Environ Int 120:246–261. https://doi.org/10.1016/J.ENVINT.2018.07.047

    Article  Google Scholar 

  6. FAO (2017) World fertilizer trends and outlook to 2020

  7. Cherkasov N, Ibhadon AO, Fitzpatrick P (2015) A review of the existing and alternative methods for greener nitrogen fixation. Chem Eng Process Process Intensif 90:24–33. https://doi.org/10.1016/j.cep.2015.02.004

    Article  Google Scholar 

  8. Pan B, Lam SK, Mosier A, Luo Y, Chen D (2016) Ammonia volatilization from synthetic fertilizers and its mitigation strategies: a global synthesis. Agric Ecosyst Environ 232:283–289. https://doi.org/10.1016/J.AGEE.2016.08.019

    Article  Google Scholar 

  9. Chen D, Suter H, Islam A, Edis R, Freney JR, Walker CN (2008) Prospects of improving efficiency of fertiliser nitrogen in Australian agriculture: a review of enhanced efficiency fertilisers. Soil Res 46:289. https://doi.org/10.1071/SR07197

    Article  Google Scholar 

  10. Saha BK, Rose MT, Wong VNL, Cavagnaro TR, Patti AF (2019) A slow release brown coal-urea fertiliser reduced gaseous N loss from soil and increased silver beet yield and N uptake. Sci Total Environ 649:793–800. https://doi.org/10.1016/j.scitotenv.2018.08.145

    Article  Google Scholar 

  11. Jaffer Y, Clark T, Pearce P, Parsons S (2002) Potential phosphorus recovery by struvite formation. Water Res 36:1834–1842. https://doi.org/10.1016/S0043-1354(01)00391-8

    Article  Google Scholar 

  12. Le Corre KS, Valsami-Jones E, Hobbs P, Parsons SA (2009) Phosphorus recovery from wastewater by struvite crystallization: a review. Crit Rev Environ Sci Technol 39:433–477. https://doi.org/10.1080/10643380701640573

    Article  Google Scholar 

  13. Liu Y, Kwag J-H, Kim J-H, Ra C (2011) Recovery of nitrogen and phosphorus by struvite crystallization from swine wastewater. Desalination 277:364–369. https://doi.org/10.1016/J.DESAL.2011.04.056

    Article  Google Scholar 

  14. Kataki S, West H, Clarke M, Baruah DC (2016) Phosphorus recovery as struvite: recent concerns for use of seed, alternative mg source, nitrogen conservation and fertilizer potential. Resour Conserv Recycl 107:142–156. https://doi.org/10.1016/J.resconrec.2015.12.009

    Article  Google Scholar 

  15. Uludag-Demirer S, Demirer GN, Frear C, Chen S (2008) Anaerobic digestion of dairy manure with enhanced ammonia removal. J Environ Manag 86:193–200. https://doi.org/10.1016/J.JENVMAN.2006.12.002

    Article  Google Scholar 

  16. Pastor L, Mangin D, Ferrer J, Seco A (2010) Struvite formation from the supernatants of an anaerobic digestion pilot plant. Bioresour Technol 101:118–125. https://doi.org/10.1016/j.biostech.2009.08.002

    Article  Google Scholar 

  17. Türker M, Çelen I (2007) Removal of ammonia as struvite from anaerobic digester effluents and recycling of magnesium and phosphate. Bioresour Technol 98:1529–1534. https://doi.org/10.1016/J.BIORTECH.2006.06.026

    Article  Google Scholar 

  18. Ye Z, Shen Y, Ye X, Zhang Z, Chen S, Shi J (2014) Phosphorus recovery from wastewater by struvite crystallization: property of aggregates. J Environ Sci 26:991–1000. https://doi.org/10.1016/S1001-0742(13)60536-7

    Article  Google Scholar 

  19. Escudero A, Blanco F, Lacalle A, Pinto M (2015) Struvite precipitation for ammonium removal from anaerobically treated effluents. J Environ Chem Eng 3:413–419. https://doi.org/10.1016/J.jece.2015.01.004

    Article  Google Scholar 

  20. Song Y-H, Qiu G-L, Yuan P, Cui XY, Peng JF, Zeng P, Duan L, Xiang LC, Qian F (2011) Nutrients removal and recovery from anaerobically digested swine wastewater by struvite crystallization without chemical additions. J Hazard Mater 190:140–149. https://doi.org/10.1016/J.JHAZMAT.2011.03.015

    Article  Google Scholar 

  21. Muhmood A, Wu S, Lu J, Ajmal Z, Luo H, Dong R (2018) Nutrient recovery from anaerobically digested chicken slurry via struvite: performance optimization and interactions with heavy metals and pathogens. Sci Total Environ 635:1–9. https://doi.org/10.1016/j.scitotenv.2018.04.129

    Article  Google Scholar 

  22. Shashvatt U, Benoit J, Aris H, Blaney L (2018) CO2-assisted phosphorus extraction from poultry litter and selective recovery of struvite and potassium struvite. Water Res 143:19–27. https://doi.org/10.1016/j.watres.2018.06.035

    Article  Google Scholar 

  23. Barbosa SG, Peixoto L, Meulman B, Alves MM, Pereira MA (2016) A design of experiments to assess phosphorous removal and crystal properties in struvite precipitation of source separated urine using different mg sources. Chem Eng J 298:146–153. https://doi.org/10.1016/j.cej.2016.03.148

    Article  Google Scholar 

  24. Taddeo R, Honkanen M, Kolppo K, Lepistö R (2018) Nutrient management via struvite precipitation and recovery from various agroindustrial wastewaters: process feasibility and struvite quality. J Environ Manag 212:433–439. https://doi.org/10.1016/j.jenvman.2018.02.027

    Article  Google Scholar 

  25. Ronteltap M, Maurer M, Gujer W (2007) Struvite precipitation thermodynamics in source-separated urine. Water Res 41:977–984. https://doi.org/10.1016/j.watres.2006.11.046

    Article  Google Scholar 

  26. Taddeo R, Kolppo K, Lepistö R (2016) Sustainable nutrients recovery and recycling by optimizing the chemical addition sequence for struvite precipitation from raw swine slurries. J Environ Manag 180:52–58. https://doi.org/10.1016/j.jenvman.2016.05.009

    Article  Google Scholar 

  27. Stolzenburg P, Capdevielle A, Teychené S (2015) Struvite precipitation with MgO as a precursor: application to wastewater treatment. Chem Eng Sci 133:9–15. https://doi.org/10.1016/J.CES.2015.03.008

    Article  Google Scholar 

  28. Xia P, Wang X, Wang X, Song J, Wang H, Zhang J, Zhao J (2016) Struvite crystallization combined adsorption of phosphate and ammonium from aqueous solutions by mesoporous MgO□loaded diatomite. Colloids Surfaces A Physicochem Eng Asp 506:220–227. https://doi.org/10.1016/J.COLSURFA.2016.05.101

    Article  Google Scholar 

  29. Chai L, Peng C, Min X et al (2017) Two-sectional struvite formation process for enhanced treatment of copper–ammonia complex wastewater. Trans Nonferrous Met Soc China 27:457–466. https://doi.org/10.1016/S1003-6326(17)60052-9

    Article  Google Scholar 

  30. Stratful I, Scrimshaw M, Lester J (2001) Conditions influencing the precipitation of magnesium ammonium phosphate. Water Res 35:4191–4199. https://doi.org/10.1016/S0043-1354(01)00143-9

    Article  Google Scholar 

  31. Jin Y, Hu Z, Wen Z (2009) Enhancing anaerobic digestibility and phosphorus recovery of dairy manure through microwave-based thermochemical pretreatment. Water Res 43:3493–3502. https://doi.org/10.1016/j.watres.2009.05.017

    Article  Google Scholar 

  32. Su C-C, Abarca RRM, de Luna MDG, Lu M-C (2014) Phosphate recovery from fluidized-bed wastewater by struvite crystallization technology. J Taiwan Inst Chem Eng 45:2395–2402. https://doi.org/10.1016/j.jtice.2014.04.002

    Article  Google Scholar 

  33. Shih Y-J, Abarca RRM, de Luna MDG, Huang YH, Lu MC (2017) Recovery of phosphorus from synthetic wastewaters by struvite crystallization in a fluidized-bed reactor: effects of pH, phosphate concentration and coexisting ions. Chemosphere 173:466–473. https://doi.org/10.1016/j.chemosphere.2017.01.088

    Article  Google Scholar 

  34. Bayuseno AP, Schmahl WW (2020) Crystallization of struvite in a hydrothermal solution with and without calcium and carbonate ions. Chemosphere 250:126245. https://doi.org/10.1016/j.chemosphere.2020.126245

    Article  Google Scholar 

  35. Le Corre KS, Valsami-Jones E, Hobbs P, Parsons SA (2005) Impact of calcium on struvite crystal size, shape and purity. J Cryst Growth 283:514–522. https://doi.org/10.1016/j.jcrysgro.2005.06.012

    Article  Google Scholar 

  36. Liu X, Wang J (2019) Impact of calcium on struvite crystallization in the wastewater and its competition with magnesium. Chem Eng J 378:122121. https://doi.org/10.1016/j.cej.2019.122121

    Article  Google Scholar 

  37. Ferguson JF, McCarty PL (1971) Effects of carbonate and magnesium on calcium phosphate precipitation. Environ Sci Technol 5:534–540. https://doi.org/10.1021/es60053a005

    Article  Google Scholar 

  38. Huchzermeier MP, Tao W (2012) Overcoming challenges to Struvite recovery from anaerobically digested dairy manure. Water Environ Res 84:34–41. https://doi.org/10.2175/106143011X13183708018887

    Article  Google Scholar 

  39. Huang H, Yang J, Li D (2014) Recovery and removal of ammonia–nitrogen and phosphate from swine wastewater by internal recycling of struvite chlorination product. Bioresour Technol 172:253–259. https://doi.org/10.1016/j.biortech.2014.09.024

    Article  Google Scholar 

  40. Zhao T-L, Li H, Huang Y-R, Yao QZ, Huang Y, Zhou GT (2019) Microbial mineralization of struvite: salinity effect and its implication for phosphorus removal and recovery. Chem Eng J 358:1324–1331. https://doi.org/10.1016/j.cej.2018.10.139

    Article  Google Scholar 

  41. Münch EV, Barr K (2001) Controlled struvite crystallisation for removing phosphorus from anaerobic digester sidestreams. Water Res 35:151–159. https://doi.org/10.1016/S0043-1354(00)00236-0

    Article  Google Scholar 

  42. APHA (1998) Standard methods for the examination of water and wastewater. American Public Health Association / American Water Works Association / Water Environment Federation, Washington DC

  43. Muhmood A, Lu J, Dong R, Wu S (2019) Formation of struvite from agricultural wastewaters and its reuse on farmlands: status and hindrances to closing the nutrient loop. J Environ Manag 230:1–13. https://doi.org/10.1016/j.jenvman.2018.09.030

    Article  Google Scholar 

  44. Huang HM, Xiao XM, Yang LP, Yan B (2011) Removal of ammonium from rare-earth wastewater using natural brucite as a magnesium source of struvite precipitation. Water Sci Technol 63:468–474. https://doi.org/10.2166/wst.2011.245

    Article  Google Scholar 

  45. Zhang H, Gong W, Luo X, Xie B, Li G, Liang H (2019) Obtaining high-purity struvite from anaerobically digested wastewater: effects of pH, mg/P, and Ca 2+ interactions. Environ Eng Sci 36:102–113. https://doi.org/10.1089/ees.2018.0065

    Article  Google Scholar 

  46. Rahman MM, Salleh MAM, Rashid U, Ahsan A, Hossain MM, Ra CS (2014) Production of slow release crystal fertilizer from wastewaters through struvite crystallization – a review. Arab J Chem 7:139–155. https://doi.org/10.1016/j.arabjc.2013.10.007

    Article  Google Scholar 

  47. Shu J, Wu H, Chen M, Peng H, Li B, Liu R, Liu Z, Wang B, Huang T, Hu Z (2019) Fractional removal of manganese and ammonia nitrogen from electrolytic metal manganese residue leachate using carbonate and struvite precipitation. Water Res 153:229–238. https://doi.org/10.1016/j.watres.2018.12.044

    Article  Google Scholar 

  48. Wilsenach JA, Schuurbiers CAH, van Loosdrecht MCM (2007) Phosphate and potassium recovery from source separated urine through struvite precipitation. Water Res 41:458–466. https://doi.org/10.1016/j.watres.2006.10.014

    Article  Google Scholar 

  49. Ronteltap M, Maurer M, Hausherr R, Gujer W (2010) Struvite precipitation from urine – influencing factors on particle size. Water Res 44:2038–2046. https://doi.org/10.1016/j.watres.2009.12.015

    Article  Google Scholar 

  50. Luo Y, Li H, Huang Y-R, Zhao TL, Yao QZ, Fu SQ, Zhou GT (2018) Bacterial mineralization of struvite using MgO as magnesium source and its potential for nutrient recovery. Chem Eng J 351:195–202. https://doi.org/10.1016/J.CEJ.2018.06.106

    Article  Google Scholar 

  51. Polat S, Sayan P (2019) Application of response surface methodology with a Box–Behnken design for struvite precipitation. Adv Powder Technol 30:2396–2407. https://doi.org/10.1016/j.apt.2019.07.022

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the financial support from Colciencias (Administrative Department of Science, Technology, and Innovation)—project number FP44842-38-2017, contract 038-2017.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mario A. Hernández.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ochoa, C., Hernández, M.A., Bayona, O.L. et al. Phosphorus recovery by struvite from anaerobic co-digestion effluents during residual biomass treatment. Biomass Conv. Bioref. 11, 261–274 (2021). https://doi.org/10.1007/s13399-020-01146-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13399-020-01146-6

Keywords

Navigation