Skip to main content

Advertisement

Log in

Biogas production from straw—the challenge feedstock pretreatment

  • Original Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

Straw fermentation offers the advantage to provide energy for the electricity, the heat, and/or the mobility sector, while contributing in parallel to close nutrient and humus cycles in agriculture. In this study, the state of technology of straw biogas fermentation is assessed. The results show that the selection of an adequate pretreatment process is one of the main key factors for a successful provision of biogas from straw. The subsequent assessment of three pretreatment options (i.e., mechanical treatment, steam explosion, alkaline treatment) shows that a mechanical pretreatment is economically more viable than the other options, even though the expected biogas yield is clearly lower. This is mainly because chemical or thermal pretreatment results in high investment cost due to high pressure or long residence times.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Fagerström A, Seadi TA, Rasi S, Briseid T (2018) The role of anaerobic digestion and biogas in the circular economy. IEA Bioenergy, p 24

  2. Giovanis E (2015) Relationship between recycling rate and air pollution: waste management in the state of Massachusetts. Waste Manag 40:192–203 https://doi.org/10/f7fb48

    Article  Google Scholar 

  3. Fruergaard T, Hyks J, Astrup T (2010) Life-cycle assessment of selected management options for air pollution control residues from waste incineration. Sci Total Environ 408:4672–4680 https://doi.org/10/ctr2kx

    Article  Google Scholar 

  4. Domingo JL, Rovira J, Vilavert L et al (2015) Health risks for the population living in the vicinity of an integrated waste management facility: screening environmental pollutants. Sci Total Environ 518–519:363–370 https://doi.org/10/ggq69q

    Article  Google Scholar 

  5. FNR (2016) Biofuels. German specialised agency for renewable raw materials (FNR), Gülzow

  6. Cherubini F, Ulgiati S (2010) Crop residues as raw materials for biorefinery systems – a LCA case study. Appl Energy 87:47–57. https://doi.org/10.1016/j.apenergy.2009.08.024

    Article  Google Scholar 

  7. EIA (2019) International Energy Statistics. In: Energy Inf. Adm. https://www.eia.gov/beta/international/data/browser/. Accessed 17 Jan 2019

  8. EBA (2019) Biogas - European Biogas Association. In: Eur. Biogas Assoc. EBA - Inf. Biogas EU. http://european-biogas.eu/biogas/. Accessed 30 Jan 2019

  9. Kovacs A (2013) Green Gas Grids - proposal for a european bio-methane roadmap. European Biogas Association (EBA), Brussels, Belgium

    Google Scholar 

  10. Bentsen NS, Felby C, Thorsen BJ (2014) Agricultural residue production and potentials for energy and materials services. Prog Energy Combust Sci 40:59–73. https://doi.org/10.1016/j.pecs.2013.09.003

    Article  Google Scholar 

  11. Andersen L, Lamp A, Dieckmann C, Baetge S, Schmidt LM, Kaltschmitt M (2018) Biogas plants as key units of biorefinery concepts: options and their assessment. J Biotechnol 283:130–139. https://doi.org/10.1016/j.jbiotec.2018.07.041

    Article  Google Scholar 

  12. EU, European Comission, Directorate-General for Research and Innovation (2018) A sustainable bioeconomy for Europe: strengthening the connection between economy, society and the environment : updated bioeconomy strategy.

  13. Majer S, Stecher K, Adler P, et al (2013) Biomass potentials and competition for biomass utilisation. German biomass research centre (DBFZ), Federal Ministry for Transport, Building and Urban Development (BMVBS), German Center for aeronautics and space travel (DLR)

  14. Schmidt LM, Mthembu LD, Reddy P, Deenadayalu N, Kaltschmitt M, Smirnova I (2017) Levulinic acid production integrated into a sugarcane bagasse based biorefinery using thermal-enzymatic pretreatment. Ind Crop Prod 99:172–178. https://doi.org/10.1016/j.indcrop.2017.02.010

    Article  Google Scholar 

  15. ETIP (2018) Cellulosic ethanol & biogas demonstration plants. In: Eur. Technol. Innov. Platf. ETIP. http://www.etipbioenergy.eu/value-chains/products-end-use/products/cellulosic-ethanol. Accessed 13 Feb 2019

  16. BD (2018) News on cellulosic ethanol demonstration plants. In: Biofuels Dig. http://www.biofuelsdigest.com/bdigest/?s = News+on+cellulosic+ethanol+demonstration+plants. Accessed 13 Feb 2019

  17. Lynd LR, Liang X, Biddy MJ, Allee A, Cai H, Foust T, Himmel ME, Laser MS, Wang M, Wyman CE (2017) Cellulosic ethanol: status and innovation. Curr Opin Biotechnol 45:202–211. https://doi.org/10.1016/j.copbio.2017.03.008

    Article  Google Scholar 

  18. Chandra R, Takeuchi H, Hasegawa T (2012) Methane production from lignocellulosic agricultural crop wastes: a review in context to second generation of biofuel production. Renew Sust Energ Rev 16:1462–1476. https://doi.org/10.1016/j.rser.2011.11.035

    Article  Google Scholar 

  19. Verbio A.G. (2019) Biomethane from straw: EU funded project “DE BIOH VERBIOSTRAW” production of biomethane from 100% straw. In: Biofuel Technol. https://www.verbio.de/en/products/verbiogas/biomethane-from-straw/. Accessed 30 Jan 2019

  20. Chandel AK, Garlapati VK, Singh AK, Antunes FAF, da Silva SS (2018) The path forward for lignocellulose biorefineries: Bottlenecks, solutions, and perspective on commercialization. Bioresour Technol 264:370–381. https://doi.org/10.1016/j.biortech.2018.06.004

    Article  Google Scholar 

  21. Bünemann EK, Bongiorno G, Bai Z, Creamer RE, de Deyn G, de Goede R, Fleskens L, Geissen V, Kuyper TW, Mäder P, Pulleman M, Sukkel W, van Groenigen JW, Brussaard L (2018) Soil quality – a critical review. Soil Biol Biochem 120:105–125. https://doi.org/10.1016/j.soilbio.2018.01.030

    Article  Google Scholar 

  22. Hao M, Hu H, Liu Z, Dong Q, Sun K, Feng Y, Li G, Ning T (2018) Shifts in microbial community and carbon sequestration in farmland soil under long-term conservation tillage and straw returning. Appl Soil Ecol 136:43–54. https://doi.org/10.1016/j.apsoil.2018.12.016

    Article  Google Scholar 

  23. Zhang JH, Wang Y, Li FC (2015) Soil organic carbon and nitrogen losses due to soil erosion and cropping in a sloping terrace landscape. Soil Res 53:87. https://doi.org/10.1071/SR14151

    Article  Google Scholar 

  24. Liski J, Palosuo T, Peltoniemi M, Sievänen R (2005) Carbon and decomposition model Yasso for forest soils. Ecol Model 189:168–182. https://doi.org/10.1016/j.ecolmodel.2005.03.005

    Article  Google Scholar 

  25. Palosuo T, Liski J, Trofymow JA, Titus BD (2005) Litter decomposition affected by climate and litter quality—testing the Yasso model with litterbag data from the Canadian intersite decomposition experiment. Ecol Model 189:183–198. https://doi.org/10.1016/j.ecolmodel.2005.03.006

    Article  Google Scholar 

  26. Zhao H, Shar AG, Li S, Chen Y, Shi J, Zhang X, Tian X (2018) Effect of straw return mode on soil aggregation and aggregate carbon content in an annual maize-wheat double cropping system. Soil Tillage Res 175:178–186. https://doi.org/10.1016/j.still.2017.09.012

    Article  Google Scholar 

  27. Andreux F (1996) Humus in World Soils. In: Humic Substances in Terrestrial Ecosystems. Elsevier, pp 45–100

  28. Wang X, Jia Z, Liang L, Zhao Y, Yang B, Ding R, Wang J, Nie J (2018) Changes in soil characteristics and maize yield under straw returning system in dryland farming. Field Crop Res 218:11–17. https://doi.org/10.1016/j.fcr.2017.12.003

    Article  Google Scholar 

  29. Drosg B, Baxter D (2015) Nutrient recovery by biogas digestate processing. IEA Bioenergy

  30. Lukehurst CT, Frost P, Seadi TA (2010) Utilisation of digestate from biogas plants as biofertiliser. International Energy Agency (IEA); Agri-Food and Biosciences Institute Hilsborough; Institute of Chemical Engineering, Biotechnology and Environmental Technology Esbjerg

  31. Lee D, Owen VN, Boe A, Jeranyama P (2007) Composition of herbaceous biomass feedstocks. Sun Grant Initiative, South Dakota State University, Brookings

  32. Wang J-S, Wang G, Feng X-Q, Kitamura T, Kang YL, Yu SW, Qin QH (2013) Hierarchical chirality transfer in the growth of Towel Gourd tendrils. Sci Rep 3. https://doi.org/10.1038/srep03102

  33. Pauly M, Gille S, Liu L, Mansoori N, de Souza A, Schultink A, Xiong G (2013) Hemicellulose biosynthesis. Planta 238:627–642. https://doi.org/10.1007/s00425-013-1921-1

    Article  Google Scholar 

  34. Sannigrahi P, Pu Y, Ragauskas A (2010) Cellulosic biorefineries—unleashing lignin opportunities. Curr Opin Environ Sustain 2:383–393. https://doi.org/10.1016/j.cosust.2010.09.004

    Article  Google Scholar 

  35. Ghaffar SH, Fan M (2013) Structural analysis for lignin characteristics in biomass straw. Biomass Bioenergy 57:264–279. https://doi.org/10.1016/j.biombioe.2013.07.015

    Article  Google Scholar 

  36. Werkelin J, Skrifvars B-J, Zevenhoven M, Holmbom B, Hupa M (2010) Chemical forms of ash-forming elements in woody biomass fuels. Fuel 89:481–493. https://doi.org/10.1016/j.fuel.2009.09.005

    Article  Google Scholar 

  37. Vassilev SV, Baxter D, Andersen LK, Vassileva CG (2010) An overview of the chemical composition of biomass. Fuel 89:913–933. https://doi.org/10.1016/j.fuel.2009.10.022

    Article  Google Scholar 

  38. Bauer A, Bösch P, Friedl A, Amon T (2009) Analysis of methane potentials of steam-exploded wheat straw and estimation of energy yields of combined ethanol and methane production. J Biotechnol 142:50–55 https://doi.org/10/fb3hmr

    Article  Google Scholar 

  39. Pronyk C, Mazza G (2012) Fractionation of triticale, wheat, barley, oats, canola, and mustard straws for the production of carbohydrates and lignins. Bioresour Technol 106:117–124. https://doi.org/10.1016/j.biortech.2011.11.071

    Article  Google Scholar 

  40. Ferreira LC, Donoso-Bravo A, Nilsen PJ, Fdz-Polanco F, Pérez-Elvira SI (2013) Influence of thermal pretreatment on the biochemical methane potential of wheat straw. Bioresour Technol 143:251–257 https://doi.org/10/f47k3q

    Article  Google Scholar 

  41. Zhu J, Wan C, Li Y (2010) Enhanced solid-state anaerobic digestion of corn stover by alkaline pretreatment. Bioresour Technol 101:7523–7528. https://doi.org/10.1016/j.biortech.2010.04.060

    Article  Google Scholar 

  42. Templeton DW, Wolfrum EJ, Yen JH, Sharpless KE (2016) Compositional analysis of biomass reference materials: results from an interlaboratory study. BioEnergy Res 9:303–314. https://doi.org/10.1007/s12155-015-9675-1

    Article  Google Scholar 

  43. Liu L, Ye XP, Womac AR, Sokhansanj S (2010) Variability of biomass chemical composition and rapid analysis using FT-NIR techniques. Carbohydr Polym 81:820–829. https://doi.org/10.1016/j.carbpol.2010.03.058

    Article  Google Scholar 

  44. Templeton DW, Scarlata CJ, Sluiter JB, Wolfrum EJ (2010) Compositional analysis of lignocellulosic feedstocks. 2. Method Uncertainties. J Agric Food Chem 58:9054–9062. https://doi.org/10.1021/jf100807b

    Article  Google Scholar 

  45. Chen X, Zhang Y, Gu Y, Liu Z, Shen Z, Chu H, Zhou X (2014) Enhancing methane production from rice straw by extrusion pretreatment. Appl Energy 122:34–41. https://doi.org/10.1016/j.apenergy.2014.01.076

    Article  Google Scholar 

  46. Thompson JL, Tyner WE (2014) Corn stover for bioenergy production: cost estimates and farmer supply response. Biomass Bioenergy 62:166–173. https://doi.org/10.1016/j.biombioe.2013.12.020

    Article  Google Scholar 

  47. Liu Z, Cao Y, Wang Z et al (2015) The utilization of soybean straw.I. Fiber Morphology and Chemical Characteristics. BioResources 10:2266–2280. https://doi.org/10.15376/biores.10.2.2266-2280

    Article  Google Scholar 

  48. Plazonić I, Barbarić-Mikočević Ž, Antonović A (2016) Chemical composition of straw as an alternative material to wood raw material in fibre isolation. Drv Ind 67:119–125. https://doi.org/10.5552/drind.2016.1446

    Article  Google Scholar 

  49. Hayes DJM (2013) Biomass composition and its relevance to biorefining. In: The role of catalysis for the sustainable production of bio-fuels and bio-chemicals. Elsevier, pp 27–65

  50. Kristensen JB, Thygesen LG, Felby C, Jorgensen H, Elder T (2008) Cell wall structural changes in wheat straw pretreated for bioethanol production. Biotechnol Biofuels 1:5. https://doi.org/10.1186/1754-6834-1-5

    Article  Google Scholar 

  51. Rubin EM (2008) Genomics of cellulosic biofuels. Nature 454:841–845. https://doi.org/10.1038/nature07190

    Article  Google Scholar 

  52. Shmulsky R, Jones PD (2011) Forest products and wood science: an introduction, 6th ed. Wiley-Blackwell, Chichester, West Sussex, U.K. ; Ames, Iowa

  53. Kaltschmitt M (2019) Energy from organic materials (biomass): a volume in the encyclopedia of sustainability science and technology, second edn. Springer New York, New York, NY

  54. Deublein D, Steinhauser A (2016) Biogas from waste and renewable resources, 2nd edn. Weinheim, WILEY-VCH

    Google Scholar 

  55. Kaltschmitt M, Hartmann H, Hofbauer H (2016) Energie aus Biomasse: Grundlagen, Techniken und Verfahren, 3., aktualisierte und erweiterte Auflage. Springer Vieweg, Berlin Heidelberg

    Google Scholar 

  56. Blume H-P, Brümmer GW, Horn R et al (2016) Scheffer/Schachtschabel Lehrbuch der Bodenkunde, 16. Auflage, (Nachdruck). Springer Spektrum, Berlin Heidelberg

    Google Scholar 

  57. Weißbach F (2008) On assessing the gas production potential of renewable primary products. ENERGY:356–358

  58. Li Y, Zhang R, Liu G, Chen C, He Y, Liu X (2013) Comparison of methane production potential, biodegradability, and kinetics of different organic substrates. Bioresour Technol 149:565–569 https://doi.org/10/f5kxr4

    Article  Google Scholar 

  59. Spliethoff H (2010) Power generation from solid fuels. springer science & business media

  60. Hendriks ATWM, Zeeman G (2009) Pretreatments to enhance the digestibility of lignocellulosic biomass. Bioresour Technol 100:10–18. https://doi.org/10.1016/j.biortech.2008.05.027

    Article  Google Scholar 

  61. Wyman CE (2013) Aqueous pretreatment of plant biomass for biological and chemical conversion to fuels and chemicals: wyman/aqueous pretreatment of plant biomass for biological and chemical conversion to fuels and chemicals. John Wiley & Sons Ltd, Chichester, UK

    Book  Google Scholar 

  62. Vertès AA (2014) Biorefinery roadmaps. Biorefineries. Elsevier, In, pp 59–71

    Book  Google Scholar 

  63. Jönsson LJ, Martín C (2016) Pretreatment of lignocellulose: formation of inhibitory by-products and strategies for minimizing their effects. Bioresour Technol 199:103–112. https://doi.org/10.1016/j.biortech.2015.10.009

    Article  Google Scholar 

  64. Larsson S, Palmqvist E, Hahn-Hägerdal B, Tengborg C, Stenberg K, Zacchi G, Nilvebrant NO (1999) The generation of fermentation inhibitors during dilute acid hydrolysis of softwood. Enzym Microb Technol 24:151–159. https://doi.org/10.1016/S0141-0229(98)00101-X

    Article  Google Scholar 

  65. Du B, Sharma LN, Becker C et al (2010) Effect of varying feedstock-pretreatment chemistry combinations on the formation and accumulation of potentially inhibitory degradation products in biomass hydrolysates. Biotechnol Bioeng 107:430–440. https://doi.org/10.1002/bit.22829

    Article  Google Scholar 

  66. Banks C (2007) Renewable energy from crops and agrowastes (CROPGEN). School of Civil Engineering & the Environment, University of Southampton (UK), Southampton

  67. Adler P, Billig E, Brosowski A, et al (2014) Leitfaden Biogasaufbereitung und -einspeisung, 5., vollständig überarbeitete Auflage. Fachagentur für Nachwachsende Rohstoffe e. V. (FNR), Gülzow-Prüzen

  68. Berglund P, Horváth I, Kabir M, Schabbauer A (2012) Biogas from lignocellulosic biomass. Swedish Center for Gas Technologies (SGC), University of Borâs, Göteborg Energi, Vattenfall, Malmö, Sweden

  69. Mshandete A, Björnsson L, Kivaisi AK, Rubindamayugi MST, Mattiasson B (2006) Effect of particle size on biogas yield from sisal fibre waste. Renew Energy 31:2385–2392. https://doi.org/10.1016/j.renene.2005.10.015

    Article  Google Scholar 

  70. Gallegos D, Wedwitschka H, Moeller L, Zehnsdorf A, Stinner W (2017) Effect of particle size reduction and ensiling fermentation on biogas formation and silage quality of wheat straw. Bioresour Technol 245:216–224. https://doi.org/10.1016/j.biortech.2017.08.137

    Article  Google Scholar 

  71. Momoh OLY, Ouki S (2018) Development of a novel fractal-like kinetic model for elucidating the effect of particle size on the mechanism of hydrolysis and biogas yield from ligno-cellulosic biomass. Renew Energy 118:71–83. https://doi.org/10.1016/j.renene.2017.11.005

    Article  Google Scholar 

  72. Sharma SK, Mishra IM, Sharma MP, Saini JS (1988) Effect of particle size on biogas generation from biomass residues. Biomass 17:251–263. https://doi.org/10.1016/0144-4565(88)90107-2

    Article  Google Scholar 

  73. Menardo S, Airoldi G, Balsari P (2012) The effect of particle size and thermal pre-treatment on the methane yield of four agricultural by-products. Bioresour Technol 104:708–714. https://doi.org/10.1016/j.biortech.2011.10.061

    Article  Google Scholar 

  74. Ferreira LC, Nilsen PJ, Fdz-Polanco F, Pérez-Elvira SI (2014) Biomethane potential of wheat straw: Influence of particle size, water impregnation and thermal hydrolysis. Chem Eng J 242:254–259. https://doi.org/10.1016/j.cej.2013.08.041

    Article  Google Scholar 

  75. Nges IA, Li C, Wang B, Xiao L, Yi Z, Liu J (2016) Physio-chemical pretreatments for improved methane potential of Miscanthus lutarioriparius. Fuel 166:29–35. https://doi.org/10.1016/j.fuel.2015.10.108

    Article  Google Scholar 

  76. Kayembe K, Basosila L, T. Mpiana P, et al (2012) The impact of the bisubstituted aromatics functional groups on the inhibition of methane biosynthesis (biogas). Adv Microbiol 02:617–622. https://doi.org/10.4236/aim.2012.24080

  77. Palmqvist E, Hahn-Hägerdal B (2000) Fermentation of lignocellulosic hydrolysates. II: inhibitors and mechanisms of inhibition. Bioresour Technol 74:25–33. https://doi.org/10.1016/S0960-8524(99)00161-3

    Article  Google Scholar 

  78. van Zandvoort I (2015) Towards the valorization of humin by-products: characterization, solubilization and catalysis

  79. Hu X, Kadarwati S, Wang S, Song Y, Hasan MDM, Li CZ (2015) Biomass-derived sugars and furans: which polymerize more during their hydrolysis? Fuel Process Technol 137:212–219. https://doi.org/10.1016/j.fuproc.2015.04.024

    Article  Google Scholar 

  80. Fan S, Zhang P, Li F, Jin S, Wang S, Zhou S (2016) A review of lignocellulose change during hydrothermal pretreatment for bioenergy production. Curr Org Chem 20:2799–2809. https://doi.org/10.2174/1385272820666160513154113

    Article  Google Scholar 

  81. Schutyser W, Renders T, Van den Bosch S et al (2018) Chemicals from lignin: an interplay of lignocellulose fractionation, depolymerisation, and upgrading. Chem Soc Rev 47:852–908. https://doi.org/10.1039/C7CS00566K

    Article  Google Scholar 

  82. Rahikainen JL, Evans JD, Mikander S, Kalliola A, Puranen T, Tamminen T, Marjamaa K, Kruus K (2013) Cellulase–lignin interactions—the role of carbohydrate-binding module and pH in non-productive binding. Enzym Microb Technol 53:315–321. https://doi.org/10.1016/j.enzmictec.2013.07.003

    Article  Google Scholar 

  83. Saini JK, Patel AK, Adsul M, Singhania RR (2016) Cellulase adsorption on lignin: a roadblock for economic hydrolysis of biomass. Renew Energy 98:29–42. https://doi.org/10.1016/j.renene.2016.03.089

    Article  Google Scholar 

  84. Chandra R, Takeuchi H, Hasegawa T, Kumar R (2012) Improving biodegradability and biogas production of wheat straw substrates using sodium hydroxide and hydrothermal pretreatments. Energy 43:273–282. https://doi.org/10.1016/j.energy.2012.04.029

    Article  Google Scholar 

  85. Pedersen M, Meyer AS (2010) Lignocellulose pretreatment severity – relating pH to biomatrix opening. New Biotechnol 27:739–750. https://doi.org/10.1016/j.nbt.2010.05.003

    Article  Google Scholar 

  86. Kim JS, Lee YY, Kim TH (2016) A review on alkaline pretreatment technology for bioconversion of lignocellulosic biomass. Bioresour Technol 199:42–48. https://doi.org/10.1016/j.biortech.2015.08.085

    Article  Google Scholar 

  87. Bhagia S, Li H, Gao X, Kumar R, Wyman CE (2016) Flowthrough pretreatment with very dilute acid provides insights into high lignin contribution to biomass recalcitrance. Biotechnol Biofuels 9:245. https://doi.org/10.1186/s13068-016-0660-5

    Article  Google Scholar 

  88. Lancefield CS, Panovic I, Deuss PJ, Barta K, Westwood NJ (2017) Pre-treatment of lignocellulosic feedstocks using biorenewable alcohols: towards complete biomass valorisation. Green Chem 19:202–214. https://doi.org/10.1039/C6GC02739C

    Article  Google Scholar 

  89. Reynolds W, Smirnova I (2018) Hydrothermal flow-through treatment of wheat straw: coupled heat and mass transfer modeling with changing bed properties. J Supercrit Fluids 133:625–639. https://doi.org/10.1016/j.supflu.2017.08.001

    Article  Google Scholar 

  90. Wang H, Pu Y, Ragauskas A, Yang B (2019) From lignin to valuable products–strategies, challenges, and prospects. Bioresour Technol 271:449–461. https://doi.org/10.1016/j.biortech.2018.09.072

    Article  Google Scholar 

  91. Sevilla M, Fuertes AB (2009) Chemical and structural properties of carbonaceous products obtained by hydrothermal carbonization of saccharides. Chem Eur J 15:4195–4203. https://doi.org/10.1002/chem.200802097

    Article  Google Scholar 

  92. Mussatto S (2004) Alternatives for detoxification of diluted-acid lignocellulosic hydrolyzates for use in fermentative processes: a review. Bioresour Technol 93:1–10. https://doi.org/10.1016/j.biortech.2003.10.005

    Article  Google Scholar 

  93. Humbird D, Davis R, Tao L, et al (2011) Process design and economics for biochemical conversion of lignocellulosic biomass to ethanol: dilute-acid pretreatment and enzymatic hydrolysis of corn stover

  94. Bals B, Wedding C, Balan V, Sendich E, Dale B (2011) Evaluating the impact of ammonia fiber expansion (AFEX) pretreatment conditions on the cost of ethanol production. Bioresour Technol 102:1277–1283. https://doi.org/10.1016/j.biortech.2010.08.058

    Article  Google Scholar 

  95. Taylor R (2015) From the sugar platform to biofuels and biochemicals. E4tech (UK) Ltd, RE-CORD, Wageningen University and Research Centre (WUR)

  96. Schmidt LM, Pérez Martínez V, Kaltschmitt M (2018) Solvent-free lignin recovered by thermal-enzymatic treatment using fixed-bed reactor technology – economic assessment. Bioresour Technol 268:382–392. https://doi.org/10.1016/j.biortech.2018.07.107

    Article  Google Scholar 

  97. Mosier N (2005) Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresour Technol 96:673–686. https://doi.org/10.1016/j.biortech.2004.06.025

    Article  Google Scholar 

  98. Wellinger A, Murphy J, Baxter D (2013) The biogas handbook: science, production and applications. Woodhead Publishing, Oxford

    Google Scholar 

  99. Theuretzbacher F, Blomqvist J, Lizasoain J, Klietz L, Potthast A, Horn SJ, Nilsen PJ, Gronauer A, Passoth V, Bauer A (2015) The effect of a combined biological and thermo-mechanical pretreatment of wheat straw on energy yields in coupled ethanol and methane generation. Bioresour Technol 194:7–13 https://doi.org/10/f3ndtg

    Article  Google Scholar 

  100. FNR (2009) FNR measuring data report II - survey of biogas plant operators. German specialised agency for renewable raw materials (FNR)

  101. Luque R, Lin CSK, Wilson K, Clark J (2016) Handbook of biofuels production: processes and technologies, second edn. Woodhead Publishing, Amsterdam u.a

  102. Dvorak SW, Hunt JF Patent - composite component from anaerobic digested materials. 16

  103. Carus M, Essel R, Heitmann C (2014) Vom Gärprodukt zum Holzwerkstoff

  104. Essel R, Breitmayer E, Carus M, et al (2015) Stoffliche Nutzung lignocellulosehaltiger Gärprodukte für Holzwerkstoffe aus Biogasanlagen. Nova-Institut GmbH, Deutsche Bundesstiftung Umwelt (DBU), Gesellschaft für nachhaltige Stoffnutzung mbH (GNS), BENAS Biogasanlagen GmbH, Glunz AG, Hürth

  105. Makádi M, Tomócsik A, Orosz V (2012) Digestate: a new nutrient source – review. In: Production of Biogas from Sludge Waste and Organic Fraction of Municipal Solid Waste. INTECH Open Access Publisher, Debrecen, Hungary, p 18

    Google Scholar 

  106. Eich-Greatorex S, Vivekanand V, Estevez MM, Schnürer A, Børresen T, Sogn TA (2018) Biogas digestates based on lignin-rich feedstock – potential as fertilizer and soil amendment. Arch Agron Soil Sci 64:347–359. https://doi.org/10.1080/03650340.2017.1352086

    Article  Google Scholar 

  107. ASUE (2011) BHKW-Kenndaten - Module, Anbieter, Kosten. Arbeitsgemeinschaft für sparsamen und umweltfreundlichen Energieverbrauch e.V. (ASUE), Berlin

  108. Towler GP, Sinnott RK (2013) Chemical engineering design: principles, practice, and economics of plant and process design, 2nd edn. Butterworth-Heinemann, Boston, MA

    Google Scholar 

  109. Peters MS, Timmerhaus KD (1991) Plant design and economics for chemial engineers. 925

  110. Seider WD, Seider WD (2009) Product and process design principles: synthesis, analysis, and evaluation, 3rd edn. Wiley, Hoboken, NJ

    Google Scholar 

  111. Lako P, Simbolotti G (2010) Combined heat and power. Energy Technology Systems Analysis Programme (IEA ETSAP)

  112. Kratky L, Jirout T (2011) Biomass size reduction machines for enhancing biogas production. Chem Eng Technol 34:391–399. https://doi.org/10.1002/ceat.201000357

    Article  Google Scholar 

  113. Coulson JM, Richardson JF (2019) Particle size reduction and enlargement. In: Coulson and Richardson’s Chemical Engineering. Elsevier, pp 205–280

  114. FNR (2013) Biogas - an introduction. German specialised agency for renewable raw materials (FNR), Gülzow-PRüzen

  115. FAO (2019) FAOSTAT statistics database. Food and Agriculture Organization of the United Nations

  116. DBFZ (2012) Basisinformationen für eine nachhaltige Nutzung von landwirtschaftlichen Reststoffen zur Bioenergiebereitstellung. Deutsches Biomasseforschungszentrum gGmbH, Leipzig

  117. Baetge S, Kaltschmitt M (2018) Rice straw and rice husks as energy sources—comparison of direct combustion and biogas production. Biomass Convers Biorefinery 8:719–737

    Article  Google Scholar 

  118. Kehres B Kehres, B. (2011). Optimierung der Verwertung von Grünabfällen - Fehlsteuerungen korrigieren. Bundesgütegemeinschaft Kompost e.V. (BGK)

  119. Dieckmann C, Lamp A, Schmidt L-M, Andersen L, Baetge S, Kaltschmitt M (2018) Von der Biogasanlage zur Bioraffinerie – Perspektiven für zukünftige Biogasanlagenkonzepte. Z Für Energiewirtschaft 42:235–256. https://doi.org/10.1007/s12398-018-0233-3

    Article  Google Scholar 

  120. Andersen L, Conrad M, Gil J, Hu X, Reynolds W, Schmidt LM, Hartge EU, Häring H, Kreft C, Meyer R, Zetzl C, Heinrich S, Kaltschmitt M, Lim C, Smirnova I (2018) Aufbau einer Vollverwertungskette für ligninhaltige Biomasse über Hochdruckverfahrenstechnik: Neue Produkte durch Extraktion, Hydrolyse, überkritische Trocknung und Extrusion. Chem Ing Tech 90:1185–1185. https://doi.org/10.1002/cite.201855120

    Article  Google Scholar 

  121. Andersen LF, Kaltschmitt M (2018) Charakterisierung und mögliche Nutzungsoptionen von Lignin-reichen Gärresten aus Strohvergärungen. Chem Ing Tech 90:1184–1185. https://doi.org/10.1002/cite.201855119

    Article  Google Scholar 

  122. Aryal N, Kvist T, Ammam F, Pant D, Ottosen LDM (2018) An overview of microbial biogas enrichment. Bioresour Technol 264:359–369. https://doi.org/10.1016/j.biortech.2018.06.013

    Article  Google Scholar 

  123. Angelidaki I, Treu L, Tsapekos P, Luo G, Campanaro S, Wenzel H, Kougias PG (2018) Biogas upgrading and utilization: current status and perspectives. Biotechnol Adv 36:452–466. https://doi.org/10.1016/j.biotechadv.2018.01.011

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stanislav Parsin.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Table 9 Basic assumptions for techno-economic analysis of biogas plants utilizing annual plant residues
Table 10 Assumed average molar composition and molar mass of main organic feedstock components. Molar methane yields are calculated using Buswell’s equation, weight specific yields assuming 22.41 Nm³ ideal gas/ti
Table 11 Overview of results about the technical assessment for the case “hammer milling” for the investigated biogas plant sizes
Table 12 Overview of results about the technical assessment for the case “steam explosion” for the investigated biogas plant sizes
Table 13 Overview of results about the technical assessment for the case “alkaline treatment” for the investigated biogas plant sizes
Table 14 Specific leveled cost of electricity with specific shares of the costs/revenues for “hammer milling” pretreatment
Table 15 Specific leveled cost of electricity with specific shares of the costs/revenues for “steam explosion” pretreatment
Table 16 Specific leveled cost of electricity with specific shares of the costs/revenues for “alkali impregnation” pretreatment
Table 17 Summary of economic calculations (i.e., capital investment, operating cost, annual profit, and return on investment) for the case “hammer milling” at varying plant sizes
Table 18 Summary of economic calculations (i.e., capital investment, operating cost, annual profit, and return on investment) for the case “steam explosion” at varying plant sizes
Table 19 Summary of economic calculations (i.e., capital investment, operating cost, annual profit, and return on investment) for the case “alkaline impregnation” at varying plant sizes

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Andersen, L.F., Parsin, S., Lüdtke, O. et al. Biogas production from straw—the challenge feedstock pretreatment. Biomass Conv. Bioref. 12, 379–402 (2022). https://doi.org/10.1007/s13399-020-00740-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13399-020-00740-y

Keywords

Navigation