Skip to main content

Advertisement

Log in

Isolation of cellulolytic microcosms from bagasse compost in co-digested fibrous substrates

  • Original Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

Symbiotic cellulolytic microcosms represent a promising microbial agent for enhancing degradation of cellulosic materials in biotechnological processes. In this study, structurally stable lignocellulose-degrading microbial communities were constructed from cellulolytic seed culture from sugarcane bagasse compost using swine manure and Napier grass as co-digested carbon sources under static aerobic condition at 55 °C. The lignocellulolytic microbial consortium enriched in peptone and yeast extract-based medium (PLMC) showed higher cellulose-degrading activity compared to lignocellulolytic microbial consortium isolated in the water-based medium (WLMC). The composite microbes in both consortia were originated from the seed culture and the co-digested substrates according to denaturing gradient gel electrophoresis profile. PLMC exhibited higher CMCase, xylanase, FPase, and avicelase activities in the supernatant than those of WLMC and was capable of degrading 70 % of filter paper within 1 week. PLMC was capable of degrading substrate with higher efficiency than the control by 11.7, 9.2, 15.5, and 11.9 % of total solid, suspended solid, volatile solid, and volatile suspended solid, respectively. The work demonstrated the potential of cellulolytic microcosms enriched by this approach on enhancing conversion efficiency in biogas production from cellulosic wastes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Vavilin VA, Fernandez B, Palatsi J, Flotats X (2008) Hydrolysis kinetics in anaerobic degradation of particulate organic material: an overview. Waste Manag 28:939–951. doi:10.1016/j.wasman.2007.03.028

    Article  Google Scholar 

  2. Sun Y, Cheng J (2002) Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresource Technol 83:1–11

    Article  Google Scholar 

  3. Recktenwald M, Wawrzynczyk J, Dey ES, Norrlöw O (2008) Enhanced efficiency of industrial-scale anaerobic digestion by the addition of glycosidic enzymes. J Environ Sci Heal A Tox Hazard Subst Environ Eng 43:1536–1540. doi:10.1080/10934520802293693

    Article  Google Scholar 

  4. Howard RL, Abotsi E, Jansen van Rensburg EL, Howard S (2003) Lignocellulose biotechnology: issues of bioconversion and enzyme production: review. Afr J Biotechnol 2:602–619

    Article  Google Scholar 

  5. Haruta S, Cui Z, Huang Z, Li M, Ishii M, Igarashi Y (2002) Construction of a stable microbial community with high cellulose-degradation ability. Appl Microbiol Biotechnol 59:529–534. doi:10.1007/s00253-002-1026-4

    Article  Google Scholar 

  6. Wongwilaiwalin S, Rattanachomsri U, Laothanachareon T, Eurwilaichitr L, Igarashi Y, Champreda V (2010) Analysis of a thermophilic lignocellulose degrading microbial consortium and multi-species lignocellulolytic enzyme system. Enzyme Microb Tech 47:283–290. doi:10.1016/j.enzmictec.2010.07.013

    Article  Google Scholar 

  7. Yang HY, Wu H, Wang XF, Cui ZJ, Li YH (2011) Selection and characteristics of a switchgrass-colonizing microbial community to produce extracellular cellulases and xylanases. Bioresource Technol 102:3546–3550. doi:10.1016/j.biortech.2010.09.009

    Article  Google Scholar 

  8. Zhang Q, He J, Tian M, Mao Z, Tang L, Zhang J, Zhang H (2011) Enhancement of methane production from cassava residues by biological pretreatment using a constructed microbial consortium. Bioresource Technol 102:8899–8906. doi:10.1016/j.biortech.2011.06.061

    Article  Google Scholar 

  9. Yuan X, Cao Y, Li J, Wen B, Zhu W, Wang X, Cui Z (2012) Effect or pretreatment by a microbial consortium on methane production of waste paper and cardboard. Bioresource Technol 118:281–288. doi:10.1016/j.biortech.2012.05.058

    Article  Google Scholar 

  10. Wen B, Yuan X, Cao Y, Liu Y, Wang X, Cui Z (2012) Optimization of liquid fermentation of microbial consortium WSD-5 followed by saccharification and acidification of wheat straw. Bioresource Technol 118:141–149. doi:10.1016/j.biortech.2012.05.025

    Article  Google Scholar 

  11. Yan L, Gao Y, Wan Y, Liu Q, Sun Z, Fu B, Wen X, Cui Z, Wang W (2012) Diversity of a mesophilic lignocellulolytic microbial consortium which is useful for enhancement of biogas production. Bioresource Technol 111:49–54. doi:10.1016/j.biortech.2012.01.173

    Article  Google Scholar 

  12. Tuesorn S, Wongwilaiwalin S, Champreda V, Leethochawalit M, Nopharatana A, Techkarnjanaruk S, Chaiprasert P (2013) Enhancement of biogas production from swine manure by a lignocellulolytic microbial consortium. Bioresource Technol 144:579–586. doi:10.1016/j.biortech.2013.07.013

    Article  Google Scholar 

  13. Cuetos MJ, Fernandez C, Gomez X, Moran A (2011) Anaerobic co-digestion of swine manure with energy crops. Biotechnol Bioprocess Eng 16:1044–1052

    Article  Google Scholar 

  14. Wang X, Yang Y, Feng Y, Ren G, Han X (2012) Optimizing feeding composition and carbon–nitrogen ratios for improved methane yield during anaerobic co-digestion of dairy, chicken manure and wheat straw. Bioresource Technol 120:78–83. doi:10.1016/j.biortech.2012.06.058

    Article  Google Scholar 

  15. Sawasdee V, Pisutpaisalb N (2014) Feasibility of biogas production from napier grass: The 6th International Conference on Applied Energy—ICAE2014. Energy Procedia 61:1229–1233. doi:10.1016/j.egypro.2014.11.1064

    Article  Google Scholar 

  16. Okaraonye CC, Ikewuchi JC (2009) Nutritional and antinutritional components of Pennisetum purpureum (Schumach). Pak J Nutr 8:32–34. doi:10.3923/pjn.2009.32.34

    Article  Google Scholar 

  17. APHA (2005) Standard methods for the examination of water and wastewater. American Public Health Association, Washington, DC

    Google Scholar 

  18. Zhou J, Bruns MA, Tiedje JM (1996) DNA recovery from soils of diverse composition. Appl Environ Microb 62:316–322

    Google Scholar 

  19. Rattanachomsri U, Tanapongpipat S, Eurwilaichitr L, Champreda V (2009) Simultaneous non-thermal saccharification of cassava pulp by multi-enzyme activity and ethanol fermentation by Candida tropicalis. J Biosci Bioeng 107:488–493. doi:10.1016/j.jbiosc.2008.12.024

    Article  Google Scholar 

  20. Ye J, Li D, Sun Y, Wang G, Yuan Z, Zhen F, Wang Y (2013) Improved biogas production from rice straw by co-digestion with kitchen waste and pig manure. Waste Manag 33:2653–2658. doi:10.1016/j.wasman.2013.05.014

    Article  Google Scholar 

  21. Li, Y, Zhang, R, Chen, C, Liu, G, He, Y, Liu, X (2013) Biogas production from co-digestion of corn stover and chicken manure under anaerobic wet, hemi-solid, and solid state conditions. Bioresource Technol 149: 406–412. doi.org/10.1016/j.biortech.2013.09.091

  22. Abouelenien, F, Namba, Y, Kosseva, MR, Nishio, N, Nakashimada, Y (2014) Enhancement of methane production from co-digestion of chicken manure with agricultural wastes. Bioresource Technol 159: 80–87. doi.org/10.1016/j.biortech.2014.02.050

  23. Kato S, Haruta S, Cui ZJ, Ishii M, Igarashi Y (2005) Stable coexistence of five bacterial strains as a cellulose degrading community. Appl Environ Microb 71:7099–7106

    Article  Google Scholar 

Download references

Acknowledgments

This study was financially supported by The Joint Graduate School of Energy and Environment (JGSEE) at King Mongkut’s University of Technology Thonburi (KMUTT).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chakrit Tachaapaikoon.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wongwilaiwalin, S., Mhuantong, W., Tangphatsornruang, S. et al. Isolation of cellulolytic microcosms from bagasse compost in co-digested fibrous substrates. Biomass Conv. Bioref. 6, 421–426 (2016). https://doi.org/10.1007/s13399-016-0199-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13399-016-0199-5

Keywords

Navigation