Skip to main content
Log in

A numerical study of fractional relaxation–oscillation equations involving \(\psi \)-Caputo fractional derivative

  • Original Paper
  • Published:
Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas Aims and scope Submit manuscript

Abstract

We provide a numerical method to solve a certain class of fractional differential equations involving \(\psi \)-Caputo fractional derivative. The considered class includes as particular case fractional relaxation–oscillation equations. Our approach is based on operational matrix of fractional integration of a new type of orthogonal polynomials. More precisely, we introduce \(\psi \)-shifted Legendre polynomial basis, and we derive an explicit formula for the \(\psi \)-fractional integral of \(\psi \)-shifted Legendre polynomials. Next, via an orthogonal projection on this polynomial basis, the problem is reduced to an algebraic equation that can be easily solved. The convergence of the method is justified rigorously and confirmed by some numerical experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Almeida, R.: A Caputo fractional derivative of a function with respect to another function. Commun. Nonlinear. Sci. Numer. Simulat. 44, 460–481 (2017)

    Article  MathSciNet  Google Scholar 

  2. Almeida, R., Malinowska, A.B., Monteiro, M.T.T.: Fractional differential equations with a Caputo derivative with respect to a kernel function and their applications. Math. Methods. Appl. Sci. 41, 336–352 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  3. Baleanu, D., Bhrawy, A.H., Taha, T.M.: Two efficient generalized Laguerre spectral algorithms for fractional initial value problems. Abstr. Appl. Anal. 2013. https://doi.org/10.1155/2013/546502.

  4. Bhrawy, A.H., Doha, E.H., Baleanu, D., Ezz-Eldien, S.S.: A spectral tau algorithm based on Jacobi operational matrix for numerical solution of time fractional diffusion-wave equations. J. Comput. Phys. 293, 142–156 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  5. Chen, W., Zhang, X.D., Korosak, D.: Investigation on fractional and fractal derivative relaxation–oscillation models. Int. J. Nonlinear. Sci. Numer. Simulat. 11(1), 3–9 (2010)

    Google Scholar 

  6. Debnath, L., Mikusiński, P.: Introduction to Hilbert Spaces with Applications, 2nd edn. Academic Press, Cambridge (1999)

    MATH  Google Scholar 

  7. Dimitrov, Y.: Higher-order numerical solutions of the fractional relaxation–oscillation equation using fractional integration (2016). arXiv:1603.08733

  8. Doha, E.H., Ahmed, H.M., El-Soubhy, S.I.: Explicit formulae for the coefficients of integrated expansions of Laguerre and Hermite polynomials and their integrals. Integral Transform. Spec. Funct. 20, 491–503 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  9. Doha, E.H., Bhrawy, A.H., Ezz-Eliden, S.S.: A Chebeshev spectral method based on operational matrix for initial and boundary value problems of fractional order. Comput. Math. Appl. 62, 2364–2373 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  10. Doha, E.H., Bhrawy, A.H., Ezz-Eldien, S.S.: A new Jacobi operational matrix: an application for solving fractional differential equations. Appl. Math. Model. 36, 4931–4943 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  11. Gulsu, M., Ozturk, Y., Anapali, A.: Numerical approach for solving fractional relaxation–oscillation equation. Appl. Math. Model. 37(8), 5927–5937 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  12. Hamarsheh, M., Ismail, A., Odibat, Z.: Optimal homotopy asymptotic method for solving fractional relaxation–oscillation equation. J. Interpol. Appl. Sci. Comput. 2, 98–111 (2015)

    MathSciNet  Google Scholar 

  13. Hwang, C., Shih, Y.: Laguerre operational matrices for fractional calculus and applications. Int. J. Control. 34, 577–584 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  14. Jarad, F., Abdeljawad, T., Baleanu, D.: Caputo-type modification of the Hadamard fractional derivatives. Adv. Differ. Equ. 2012.: Article ID 142 (2012)

  15. Khosravian-Arab, H., Almeida, R.: Numerical solution for fractional variational problems using the Jacobi polynomials. Appl. Math. Model. 39(21), 6461–6470 (2015)

    Article  MathSciNet  Google Scholar 

  16. Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. Elsevier, San Diego (2006)

    MATH  Google Scholar 

  17. Lederman, R.R., Rokhlin, V.: On the analytical and numerical properties of the truncated Laplace transform. Part II. SIAM J. Numer. Anal 54(2), 665–687 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  18. Luke, Y.: The Special Functions and Their Approximations, vol. 2. Academic Press, New York (1969)

    MATH  Google Scholar 

  19. Magin, R., Ortigueira, M.D., Podlubny, I., Trujillo, J.: On the fractional signals and systems. Signal Process. 91, 350–371 (2011)

    Article  MATH  Google Scholar 

  20. Mainardi, F.: Fractional relaxation oscillation and fractional diffusion-wave phenomena. Chaos Solit. Fract. 7, 1461–1477 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  21. Odibat, Z., Shawagfeh, N.T.: Generalized Taylor’s formula. Appl. Math. Comput. 186(1), 286–293 (2007)

    MathSciNet  MATH  Google Scholar 

  22. Paraskevopoulos, P.N.: Chebyshev series approach to system identification, analysis and control. J. Frankl. Inst. 316, 135–157 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  23. Paraskevopoulos, P.N.: Legendre series approach to identification and analysis of linear systems. IEEE Trans. Autom. Control 30, 585–589 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  24. Saadatmandi, A., Deghan, M.: A new operational matrix for solving fractional-order differential equation. Comput. Math. Appl. 59, 1326–1336 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  25. Shah, F.A., Abass, R.: Generalized wavelet collocation method for solving fractional relaxation–oscillation equation arising in fluid mechanics. Int. J. Comput. Math. Sci. Eng. 6(2), 1–17 (2017)

    Google Scholar 

  26. Tofighi, A.: The intrinsic damping of the fractional oscillator. Phys. A 329, 29–34 (2003)

    Article  Google Scholar 

Download references

Acknowledgements

Ricardo Almeida was supported by Portuguese funds through the CIDMA - Center for Research and Development in Mathematics and Applications, and the Portuguese Foundation for Science and Technology (FCT-Fundação para a Ciência e a Tecnologia), within project UID/MAT/04106/2013. Bessem Samet extends his appreciation to the Deanship of Scientific Research at King Saud University for funding this work through research group No RGP–237.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bessem Samet.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Almeida, R., Jleli, M. & Samet, B. A numerical study of fractional relaxation–oscillation equations involving \(\psi \)-Caputo fractional derivative. RACSAM 113, 1873–1891 (2019). https://doi.org/10.1007/s13398-018-0590-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13398-018-0590-0

Keywords

Mathematics Subject Classification

Navigation