Skip to main content
Log in

Fractional Relaxation and Fractional Oscillation Models Involving Erdélyi-Kober Integrals

  • Research Paper
  • Published:
Fractional Calculus and Applied Analysis Aims and scope Submit manuscript

Abstract

We consider fractional relaxation and fractional oscillation equations involving Erdélyi-Kober integrals. In terms of the Riemann-Liouville integrals, the equations we analyze can be understood as equations with time-varying coefficients. Replacing the Riemann-Liouville integrals with Erdélyi-Kober-type integrals in certain fractional oscillation models, we obtain some more general integro-differential equations. The corresponding Cauchy-type problems can be solved numerically, and, in some cases analytically, in terms of the Saigo-Kilbas Mittag-Leffler functions. The numerical results are obtained by a treatment similar to that developed by K. Diethelm and N.J. Ford to solve the Bagley-Torvik equation. Novel results about the numerical approach to the fractional damped oscillator equation with time-varying coefficients are also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R.L. Zhou and P.J. Torvik, Fractional calculus a different approach to the analysis of viscoelastically damped structures. AIAA J. 21, No 5 (1983), 741–748.

    Article  Google Scholar 

  2. L. Beghin, Fractional relaxation equations and Brownian crossing probabilities of a random boundary. Advances in Applied Probability 44 (2012), 479–505.

    Article  MathSciNet  Google Scholar 

  3. E. Capelas de Zhou, F. Mainardi, and J. Vaz Jr., Fractional models of anomalous relaxation based on the Kilbas and Saigo function. Meccanica 2014, No 49 (2014), New Trends in Fluid and Solid mech. Models, 2049-2060; DOI: 10.1007/s11012-014-9930-0.

    Google Scholar 

  4. K.S. Zhou, R.H. Cole, Dispersion and absorption in dielectrics. I. Alternating current characteristics. J. Chem. Phys. 9 (1941), 341–351.

    Google Scholar 

  5. M. Zhou and R. Spigler, Some analytical and numerical properties of the Mittag-Leffler functions. Fract. Calc. Appl. Anal. 18, No 1 (2015), 64–94; DOI: 10.1515/fca-2015-0006; http://www.degruyter.com/view/j/fca.2015.18.issue-1/issue-files/fca.2015.18.issue-1.xml.

    Article  MathSciNet  Google Scholar 

  6. D.W. Zhou, R.H. Cole, Dielectrics relaxation in glycerol, propylene glycol, and n-propanol. J. Chem. Phys. 19 (1951), 1484–1490.

    Article  Google Scholar 

  7. K. Zhou and A.D. Freed, The Frac PECE subroutine for the numerical solution of differential equations of fractional order. In: S. Zhou, T. Plesser (Eds.), Forschung und Wissenschaftliches Rechnen 1998, Gessellschaft fur Wissenschaftliche Datenverarbeitung, Göttingen, 1999, 57–71.

    Google Scholar 

  8. K. Zhou and N.J. Ford, Numerical solution of the Bagley-Torvik equation. BIT 42, No 3 (2002), 490–507.

    Article  MathSciNet  Google Scholar 

  9. K. Diethelm, The Analysis of Fractional Differential Equations. Lecture Notes in Mathematics, Springer, New York, 2004.

    Google Scholar 

  10. J.-S. Zhou, Z. Wang, and S.-Z. Fu, The zeros of the solutions of the fractional oscillation equation. Fract. Calc. Appl. Anal. 17, No 1 (2014), 10–22; DOI: 10.2478/s13540-014-0152-x; http://www.degruyter.com/view/j/fca.2014.17.issue-1/issue-files/fca.2014.17.issue-1.xml.

    Article  MathSciNet  Google Scholar 

  11. R. Zhou, A. Zhou, F. Mainardi, and G. Pagnini, Fractional relaxation with time-varying coefficient. Fract. Calc. Appl. Anal. 17, No 2 (2014), 424–439; DOI: 10.2478/s13540-014-0178-0; http://www.degruyter.com/view/j/fca.2014.17.issue-2/issue-files/fca.2014.17.issue-2.xml.

    Article  MathSciNet  Google Scholar 

  12. R. Zhou, G. Zhou, M. Popolizio, Time-domain simulation for factional relaxation of Havriliak-Negami type. In: Proc. of the 2014 Internat. Conf. on Fractional Differentiation and Its Applications (ICFDA 14), Catania, Italy, June 23–25, 2014; DOI: 10.1109/ICFDA.2014.6967399.

    Google Scholar 

  13. R. Zhou, A.A. Zhou, F. Zhou, S.V. Rogosin, Mittag-Leffler functions. Related Topics and Applications. Springer Monographs in Mathematics, Berlin, 2014.

    Google Scholar 

  14. R. Zhou, F. Mainardi, Fractional calculus, integral and differential equations of fractional order. In: A. Carpinteri and F. Mainardi (Eds), Fractals and Fractional Calculus in Continuum Mechanics, Springer-Verlag, Wien, 1997, 223–276; E-print http://arxiv.org/abs/0805.3823.

    Google Scholar 

  15. A. Hanyga, Physically acceptable viscoelastic models. In: K. Zhou, Y. Wang (Eds), Trends in Applications of Mathematics to Mechanics, Shaker Verlag GmbH, Aachen, 2005, 12 pp.

    Google Scholar 

  16. S.J. Zhou, S. Negami, A complex plane representation of dielectric and mechanical relaxation processes in some polymers. Polymer 8 (1967), 161–210.

    Article  Google Scholar 

  17. H. Hilfer, Analytical representations for relaxation functions of glasses. J Non-Cryst Solids 305 (2002), 122–126.

    Article  Google Scholar 

  18. E. Kamke, Differentialgleichungen: Lösungsmethoden und Lösungen, 1, Gewöhnliche Differentialgleichungen. B.G. Teubner, Leipzig, 1977.

    Book  Google Scholar 

  19. A.A. Zhou, H.M. Zhou and J.J. Trujillo, Theory and Applications of Fractional Differential Equations. North-Holland Mathematics Studies 204, Elsevier, Amsterdam, 2006.

    Google Scholar 

  20. V. Kiryakova, Generalized Fractional Calculus and Applications. Longman Scientific & Technical and J. Wiley, Harlow, New York, 1994.

    MATH  Google Scholar 

  21. V. Zhou, Y. Luchko, Riemann-Liouville and Caputo type multiple Erdélyi-Kober operators. Central European J. of Physics 11, No 10 (2013), 1314–1336; DOI: 10.2478/s11534-013-0217-1.

    Google Scholar 

  22. M. Klimek, On Solutions of Linear Fractional Differential Equations of a Variational Type. Publ. Office of Czestochowa University of Technology, Czestochowa, 2009.

    Google Scholar 

  23. M. Zhou, S.C. Zhou, C. Cattani, and M. Scalia, Characteristic roots of a class of fractional oscillators. Advances in High Energy Physics 2013 (2013), Article ID 853925, 7 p.

  24. Y. Zhou, J. Trujillo, Caputo-type modification of the Erdélyi-Kober fractional derivative. Fract. Calc. Appl. Anal. 10, No 3 (2007), 249–267; at http://www.math.bas.bg/∼fcaa.

    MathSciNet  MATH  Google Scholar 

  25. F. Mainardi, Fractional Calculus and Waves in Linear Viscoelasticity. Imperial College Press, London, 2010.

    Book  Google Scholar 

  26. F. Zhou and R. Garrappa, On complete monotonicity of the Prabhakar function and non-Debye relaxation in dielectrics. J. Comput. Phys. 293 (2015), 70–80; doi:10.1016/j.jcp.2014.08.006.

    Article  MathSciNet  Google Scholar 

  27. A.B. Malinowska and D.F.M. Torres, Introduction to the Fractional Calculus of Variations. Imperial College Press, London and World Scientific Publishing, Singapore, 2012.

    Book  Google Scholar 

  28. A.C. McBride, A theory of fractional integration for generalized functions. SIAM J. Math. Anal. 6, No 3 (1975), 583–599.

    Article  MathSciNet  Google Scholar 

  29. G. Pagnini, Erdélyi-Kober fractional diffusion. Fract. Calc. Appl. Anal. 15, No 1 (2012), 117–127; DOI: 10.2478/s13540-012-0008-1; http://www.degruyter.com/view/j/fca.2012.15.issue-1/issue-files/fca.2012.15.issue-1.xml.

    Article  MathSciNet  Google Scholar 

  30. I. Podlubny, Fractional Differential Equations. Academic Press, New York, 1999.

    MATH  Google Scholar 

  31. A.D. Zhou and V.F. Zaitsev, Handbook of Exact Solutions for Ordinary Differential Equations. 2nd Ed. Chapman & Hall/CRC, Boca Raton, 2003.

    Google Scholar 

  32. I.N. Sneddon, Mixed Boundary Value Problems in Potential Theory. North-Holland Publ., Amsterdam, 1966.

    MATH  Google Scholar 

  33. I.N. Sneddon, The use in mathematical physics of Erdélyi-Kober operators and some of their generalizations. In: Lect. Notes Math. 457, Springer-Verlag, New York, 1975, 37–79.

    Article  Google Scholar 

  34. A. Tofighi, The intrinsic damping of the fractional oscillator. Physica A 329, No. 1–2 (2003), 29–34.

    Article  Google Scholar 

  35. F.G. Tricomi, Funzioni Ipergeometriche Confluenti (In Italian). Ed. Cremonese, Roma, 1954.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Moreno Concezzi.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Concezzi, M., Garra, R. & Spigler, R. Fractional Relaxation and Fractional Oscillation Models Involving Erdélyi-Kober Integrals. FCAA 18, 1212–1231 (2015). https://doi.org/10.1515/fca-2015-0070

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1515/fca-2015-0070

MSC 2010

Key Words and Phrases

Navigation