Skip to main content
Log in

Operators on the Fréchet sequence spaces \({\varvec{ces(p+)}}\), \(1\le p<\infty \)

  • Original Paper
  • Published:
Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas Aims and scope Submit manuscript

Abstract

The Fréchet sequence spaces \( ces(p+) \) are very different to the Fréchet sequence spaces \( \ell _{p+}, 1 \le p < \infty ,\) that generate them, (Albanese et al. in J Math Anal Appl 458:1314–1323, 2018). The aim of this paper is to investigate various properties (eg. continuity, compactness, mean ergodicity) of certain linear operators acting in and between the spaces \( ces (p+),\) such as the Cesàro operator, inclusion operators and multiplier operators. Determination of the spectra of such classical operators is an important feature. It turns out that both the space of multiplier operators \( {{\mathcal {M}}}(ces (p+)) \) and its subspace \( {{\mathcal {M}}}_c (ces (p+)) \) consisting of the compact multiplier operators are independent of p. Moreover, \( {{\mathcal {M}}}_c (ces (p+)) \) can be topologized so that it is the strong dual of the Fréchet–Schwartz space \( ces ( 1+)\) and \( ( {{\mathcal {M}}}_c (ces (p+))'_\beta \simeq ces (1+) \) is a proper subspace of the Köthe echelon Fréchet space \( {{\mathcal {M}}}(ces (p+)) = \lambda ^\infty (A) , 1 \le p < \infty , \) for a suitable matrix A.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Albanese, A.A., Bonet, J., Ricker, W.J.: Mean ergodic operators in Fréchet spaces. Ann. Acad. Sci. Fenn. Math. 34, 401–436 (2009)

    MathSciNet  MATH  Google Scholar 

  2. Albanese, A.A., Bonet, J., Ricker, W.J.: The Cesàro operator in the Fréchet spaces \(\ell ^{p+}\) and \(L^{p-}\). Glasgow Math. J. 59, 273–287 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  3. Albanese, A.A., Bonet, J., Ricker, W.J.: The Fréchet spaces \(ces(p+),1 < p < \infty,\). J. Math. Anal. Appl. 458, 1314–1323 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  4. Albanese, A.A., Bonet, J., Ricker, W.J.: Multiplier and averaging operators in the Banach spaces \(ces(p),1 < p < \infty ,\) Positivity. https://doi.org/10.1007/s11117-018-0601-6

  5. Bachelis, G.F., Gilbert, J.E.: Banach spaces of compact multipliers and their dual spaces. Math. Z. 125, 285–297 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bennett, G.: Factorizing the classical inequalities, Mem. Am. Math. Soc. 120(576), viii + 130 pp (1996)

  7. Bonet, J., Ricker, W.J.: The canonical spectral measure in Köthe echelon spaces. Integral Equ. Oper. Theory 53, 477–496 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bourdon, P.S., Feldman, N.S., Shapiro, J.H.: Some properties of \(N\)-supercyclic operators. Studia Math. 165, 135–157 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  9. Crofts, G.: Concerning perfect Fréchet spaces and diagonal transformations. Math. Ann. 182, 67–76 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  10. Curbera, G.P., Ricker, W.J.: Solid extensions of the Cesàro operator on \(\ell ^p\) and \(c_0\). Integral Equ. Oper. Theory 80, 61–77 (2014)

    Article  MATH  Google Scholar 

  11. Díaz, J.-C.: An example of a Fréchet space, not Montel, without infinite-dimensional normable subspaces. Proc. Am. Math. Soc. 96, 721 (1986)

    Article  MATH  Google Scholar 

  12. Edwards, R.E.: Functional Analysis. Theory and Applications, Holt, Rinehart and Winston, New York Chicago San Francisco (1965)

  13. Grosse-Erdmann, K.-G.: The Blocking Technique, Weighted Mean Operators and Hardy’s Inequality. Lecture Notes in Mathematics, vol. 1679. Springer, Berlin (1998)

  14. Grothendieck, A.: Topological Vector Spaces. Gordon and Breach, London (1973)

    MATH  Google Scholar 

  15. Hardy, G.H., Littlewood, J.E., Pólya, G.: Inequalities. Cambridge University Press, Cambridge reprinted (1964)

  16. Jarchow, H.: Locally Convex Spaces. Teubner, Stuttgart (1981)

    Book  MATH  Google Scholar 

  17. Krengel, U.: Ergodic Theorems. de Gruyter Studies in Mathematics 6. Walter de Gruyter Co., Berlin (1985)

  18. Meise, R., Vogt, D.: Introduction to Functional Analysis. Clarendon Press, Oxford (1997)

    MATH  Google Scholar 

  19. Metafune, G., Moscatelli, V.B.: On the space \(\ell ^{p+}=\cap_{q>p}\ell ^q\). Math. Nachr. 147, 7–12 (1990)

    Article  MathSciNet  Google Scholar 

  20. Pérez Carreras, P., Bonet, J.: Barrelled Locally Convex Spaces. North Holland, Amsterdam (1987)

    MATH  Google Scholar 

  21. Pitt, H.R.: A note on bilinear forms. J. Lond. Math. Soc. 11, 171–174 (1936)

    MathSciNet  MATH  Google Scholar 

  22. Ricker, W.J.: A spectral mapping theorem for scalar-type spectral operators in locally convex spaces. Integral Equ. Oper. Theory 8, 276–288 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  23. Robertson, A.P., Robertson, W.: Topological Vector Spaces. Cambridge University Press, Cambridge (1973)

    MATH  Google Scholar 

  24. Waelbroeck, L.: Topological vector spaces and algebras. Lecture Notes in Mathematics, vol. 230. Springer, Berlin (1971)

Download references

Acknowledgements

The research of the first two authors was partially supported by the projects MTM2016-76647-P and GV Prometeo/2017/102 (Spain). The authors are thankful to the referees for their careful reading of the manuscript and their suggestions which improved the presentation of the article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José Bonet.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Albanese, A.A., Bonet, J. & Ricker, W.J. Operators on the Fréchet sequence spaces \({\varvec{ces(p+)}}\), \(1\le p<\infty \). RACSAM 113, 1533–1556 (2019). https://doi.org/10.1007/s13398-018-0564-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13398-018-0564-2

Keywords

Mathematics Subject Classification

Navigation