Skip to main content
Log in

Impact of Post-Deposition Annealing on Electrical Properties of RF-Sputtered Cu2O/4H-SiC and NiO/4H-SiC PiN Diodes

  • Original Article - Electronics, Magnetics and Photonics
  • Published:
Electronic Materials Letters Aims and scope Submit manuscript

Abstract

This study investigated the impact of the post-deposition annealing (PDA) process on the material and electrical properties of copper oxide (Cu2O) and nickel oxide (NiO) thin films deposited on a silicon carbide (SiC) substrate. Through radiofrequency (RF) sputtering, these films were subjected to PDA in a nitrogen (N2) and oxygen (O2) gas environment. Remarkably, the Cu2O films resisted phase transition following the N2 PDA process but exhibited a transition to cupric oxide (CuO) after undergoing the O2 PDA process. The symmetry of Cu 2p in the as-deposited Cu2O film was excellent; however, the phase-transformed CuO films exhibited an increase in binding energy and the emergence of satellite peaks. The Ni 2p exhibited various defects, such as nickel vacancies (VNi) and interstitial oxygen (Oi), in response to the different PDA atmospheres. The rectification ratios of the N2-annealed Cu2O and NiO devices were determined as 1.50 × 107 and 4.01 × 106, respectively, signifying a substantial enhancement by a factor of approximately 789 for the Cu2O/SiC device and 124 for the NiO/SiC device relative to their non-annealed counterparts. The findings of this study indicate that meticulous control of deposition for potential p-type materials such as Cu2O and NiO can significantly improve the performance in applications involving high-throughput and low-cost electronics.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. She, X., Huang, A.Q., Lucia, O., Ozpineci, B.: Review of silicon carbide power devices and their applications. IEEE Trans. Ind. Electron. 64, 8193–8205 (2017)

    Article  Google Scholar 

  2. Alok, D., Baliga, B.J., McLarty, P.K.: A simple edge termination for silicon carbide devices with nearly ideal breakdown voltage. IEEE Electron Device Lett. 15, 394–395 (1994)

    Article  ADS  CAS  Google Scholar 

  3. Itoh, A., Kimoto, T., Matsunami, H.: High performance of high-voltage 4H-SiC Schottky barrier diodes. IEEE Electron Dev. Lett. 16, 280–282 (1995)

    Article  ADS  CAS  Google Scholar 

  4. Raghunathan, R., Alok, D., Baliga, B.J.: High voltage 4H-SiC Schottky barrier diodes. IEEE Electron Device Lett. 16, 226–227 (1995)

    Article  ADS  CAS  Google Scholar 

  5. Gao, G.B., Sterner, J., Morkoc, H.: High frequency performance of SiC heterojunction bipolar transistors. IEEE Trans. Electron Devices 41, 1092–1097 (1994)

    Article  ADS  CAS  Google Scholar 

  6. Negoro, Y., Katsumoto, K., Kimoto, T., Matsunami, H.: Electronic behaviors of high-dose phosphorus-ion implanted 4H–SiC (0001). J. Appl. Phys. 96, 224–228 (2004)

    Article  ADS  CAS  Google Scholar 

  7. Matsunami, H., Kimoto, T.: Step-controlled epitaxy of SiC: high-quality homoepitaxial growth. Diam. Relat. Mater. 7, 342–347 (1998)

    Article  ADS  CAS  Google Scholar 

  8. Kanaya, M., Takahashi, J., Fujiwara, Y., Moritani, A.: Controlled sublimation growth of single crystalline 4H-SiC and 6H-SiC and identification of polytypes by x-ray diffraction. Appl. Phys. Lett. 58, 56–58 (1991)

    Article  ADS  CAS  Google Scholar 

  9. Levinshtein, M.E., Mnatsakanov, T.T., Agarwal, A.K., Palmour, J.W.: Analytical and numerical studies of p + -emitters in silicon carbide bipolar devices. Semicond. Sci. Technol. 26, 055024 (2011)

    Article  ADS  Google Scholar 

  10. Lu, L., Zhang, H., Wu, X., Shi, J., Sun, Y.Y.: Atomic and electronic structures of p-type dopants in 4H-SiC. Chinese Phys. B 30, 096806 (2021)

    Article  ADS  CAS  Google Scholar 

  11. Khanna, V.K.: Extreme-temperature and harsh-environment electronics, pp. 3–20. IOP Publishing Limited, Bristol (2017)

    Book  Google Scholar 

  12. Contreras, S., Konczewicz, L., Arvinte, R., Peyre, H., Chassagne, T., Zielinski, M., Juillaguet, S.: Electrical transport properties of p-type 4H-SiC. Phys. Status Solidi A 214, 1600679 (2017)

    Article  ADS  Google Scholar 

  13. Huang, Y., Wang, R., Zhang, Y., Yang, D., Pi, X.: Compensation of p-type doping in Al-doped 4H-SiC. J. Appl. Phys. 131, 185703 (2022)

    Article  CAS  Google Scholar 

  14. Kondo, J.: Chem. Commun. 3, 357–358 (1998)

    Google Scholar 

  15. Kuo, C.H., Yang, Y.C., Gwo, S., Huang, M.H.: Facet-dependent and au nanocrystal-enhanced electrical and photocatalytic properties of Au-Cu2O core-shell heterostructures. J. Am. Chem. Soc. 133, 1052–1057 (2011)

    Article  CAS  PubMed  Google Scholar 

  16. Olsen, L.C., Bohara, R.C., Urie, M.W.: Explanation for low-efficiency Cu2O Schottky-barrier solar cells. Appl. Phys. Lett. 34, 47–49 (1979)

    Article  ADS  CAS  Google Scholar 

  17. Tan, C.S., Hsu, S.C., Ke, W.H., Chen, L.J., Huang, M.H.: Facet-dependent electrical conductivity properties of Cu2O crystals. Nano Lett. 15, 2155–2160 (2015)

    Article  ADS  CAS  PubMed  Google Scholar 

  18. Rakhshani, A.E., Varghese, J.: Galvanostatic deposition of thin films of cuprous oxide. Sol. Energy Mater. 15, 237–248 (1987)

    Article  CAS  Google Scholar 

  19. Muñoz-Rojas, D., Jordan, M., Yeoh, C., Marin, A.T., Kursumovic, A., Dunlop, L.A., Iza, D.C., Chen, A., Wang, H., MacManus Driscoll, J.L.: Growth of ∼5 cm 2V−1s−1 mobility, p-type Copper(I) oxide (Cu2O) films by fast atmospheric atomic layer deposition (AALD) at 225°C and below. AIP Adv. 2, 042179 (2012)

    Article  ADS  Google Scholar 

  20. Drobny, V.F., Pulfrey, L.: Properties of reactively-sputtered copper oxide thin films. Thin Solid Films 61, 89–98 (1979)

    Article  ADS  CAS  Google Scholar 

  21. Bergum, K., Riise, H.N., Gorantla, S., Lindberg, P.F., Jensen, I.J.T., Gunnæs, A.E., Galeckas, A., Diplas, S., Svensson, B.G., Monakhov, E.: Improving carrier transport in Cu2O thin films by rapid thermal annealing. J. Phys. Condens. Matter 30, 075702 (2018)

    Article  PubMed  Google Scholar 

  22. Minami, T., Nishi, Y., Miyata, T.: Impact of incorporating sodium into polycrystalline p-type Cu2O for heterojunction solar cell applications. Appl. Phys. Lett. 105, 212104 (2014)

    Article  ADS  Google Scholar 

  23. Ishizuka, S., Kato, S., Okamoto, Y., Akimoto, K.: Control of hole carrier density of polycrystalline Cu2O thin films by Si doping. Appl. Phys. Lett. 80, 950–952 (2002)

    Article  ADS  CAS  Google Scholar 

  24. Takiguchi, Y., Takei, Y., Nakada, K., Miyajima, S.: Fabrication and characterization of sputtered Cu2O: N/c-Si heterojunction diode. Appl. Phys. Lett. 111, 093501 (2017)

    Article  ADS  Google Scholar 

  25. Diwald, O., Thompson, T.L., Zubkov, T., Goralski, E.G., Walck, S.D., Yates, J.T.: Photochemical activity of nitrogen-doped rutile TiO 2 (110) in visible light. J. Phys. Chem. B 108, 6004–6008 (2004)

    Article  CAS  Google Scholar 

  26. Li, J., Mei, Z., Liu, L., Liang, H., Azarov, A., Kuznetsov, A., Liu, Y., Ji, A., Meng, Q., Du, X.: Probing defects in nitrogen-doped Cu2O. Sci. Rep. 4, 7240 (2014)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  27. Malerba, C., Azanza Ricardo, C.L.A., D’Incau, M., Biccari, F., Scardi, P., Mittiga, A.: Nitrogen doped Cu2O: a possible material for intermediate band solar cells? Sol. Energy Mater. Sol. Cells 105, 192–195 (2012)

    Article  CAS  Google Scholar 

  28. Lee, Y.S., Heo, J., Winkler, M.T., Siah, S.C., Kim, S.B., Gordon, R.G., Buonassisi, T.: Nitrogen-doped cuprous oxide as a p-type hole-transporting layer in thin-film solar cells. J. Mater. Chem. A 1, 15416–15422 (2013)

    Article  CAS  Google Scholar 

  29. Liu, A., Liu, G., Zhu, H., Shin, B., Fortunato, E., Martins, R., Shan, F.: Hole mobility modulation of solution-processed nickel oxide thin-film transistor based on high-k dielectric. Appl. Phys. Lett. 108, 233506 (2016)

    Article  ADS  Google Scholar 

  30. Zhang, Z., Zhao, Y., Zhu, M.: NiO films consisting of vertically aligned cone-shaped NiO rods. Appl. Phys. Lett. 88, 033101 (2006)

    Article  ADS  Google Scholar 

  31. Hwang, J.D., Ho, T.H.: Effects of oxygen content on the structural, optical, and electrical properties of NiO films fabricated by radio-frequency magnetron sputtering. Mater. Sci. Semicond. Process. 71, 396–400 (2017)

    Article  ADS  CAS  Google Scholar 

  32. Manders, J.R., Tsang, S.W., Hartel, M.J., Lai, T.H., Chen, S., Amb, C.M., Reynolds, J.R., So, F.: Solution-processed nickel oxide hole transport layers in high efficiency polymer photovoltaic cells. Adv. Funct. Mater. 23, 2993–3001 (2013)

    Article  CAS  Google Scholar 

  33. Jiang, J., Wang, X., Zhang, Q., Li, J., Zhang, X.X.: Thermal oxidation of Ni films for p-type thin-film transistors. Phys. Chem. Chem. Phys. 15, 6875–6878 (2013)

    Article  CAS  PubMed  Google Scholar 

  34. Irwin, M.D., Buchholz, D.B., Hains, A.W., Chang, R.P.H., Marks, T.J.: p -Type semiconducting nickel oxide as an efficiency-enhancing anode interfacial layer in polymer bulk-heterojunction solar cells. Proc. Natl. Acad. Sci. 105, 2783–2787 (2008)

    Article  ADS  CAS  PubMed Central  Google Scholar 

  35. Hsu, C.C., Su, H.W., Hou, C.H., Shyue, J.J., Tsai, F.Y.: Atomic layer deposition of NiO hole-transporting layers for polymer solar cells. Nanotechnology 26, 385201 (2015)

    Article  PubMed  Google Scholar 

  36. Liu, S., Liu, R., Chen, Y., Ho, S., Kim, J.H., So, F.: Nickel oxide hole injection/transport layers for efficient solution-processed organic light-emitting diodes. Chem. Mater. 26, 4528–4534 (2014)

    Article  CAS  Google Scholar 

  37. Jiang, F., Choy, W.C.H., Li, X., Zhang, D., Cheng, J.: Post-treatment-free solution-processed non-stoichiometric NiOx nanoparticles for efficient hole-transport layers of organic optoelectronic devices. Adv. Mater. 27, 2930–2937 (2015)

    Article  CAS  PubMed  Google Scholar 

  38. Seo, S., Park, I.J., Kim, M., Lee, S., Bae, C., Jung, H.S., Park, N.G., Kim, J.Y., Shin, H.: An ultra-thin, un-doped NiO hole transporting layer of highly efficient (16.4%) organic-inorganic hybrid perovskite solar cells. Nanoscale 8, 11403–11412 (2016)

    Article  ADS  CAS  PubMed  Google Scholar 

  39. You, J., Meng, L., Song, T.B., Guo, T.F., Yang, Y.M., Chang, W.H., Hong, Z., Chen, H., Zhou, H., Chen, Q., Liu, Y., De Marco, N., Yang, Y.: Improved air stability of perovskite solar cells via solution-processed metal oxide transport layers. Nat. Nanotechnol. 11, 75–81 (2016)

    Article  ADS  PubMed  Google Scholar 

  40. Yin, X., Chen, P., Que, M., Xing, Y., Que, W., Niu, C., Shao, J.: Highly efficient flexible perovskite solar cells using solution-derived NiOx hole contacts. ACS Nano 10, 3630–3636 (2016)

    Article  CAS  PubMed  Google Scholar 

  41. Lee, H., Huang, Y., Horn, M.W., Feng, S.P.: Engineered optical and electrical performance of rf–sputtered undoped nickel oxide thin films for inverted perovskite solar cells. Sci. Rep. 8(1), 5590 (2018)

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  42. Liu, G., Liu, A., Zhu, H., Shin, B., Fortunato, E., Martins, R., Wang, Y., Shan, F.: Low-temperature, nontoxic water-induced metal-oxide thin films and their application in thin-film transistors. Adv. Funct. Mater. 25, 2564–2572 (2015)

    Article  CAS  Google Scholar 

  43. Socratous, J., Banger, K.K., Vaynzof, Y., Sadhanala, A., Brown, A.D., Sepe, A., Steiner, U., Sirringhaus, H.: Electronic structure of low-temperature solution-processed amorphous metal oxide semiconductors for thin-film transistor applications. Adv. Funct. Mater. 25, 1873–1885 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Liu, A., Liu, G.X., Zhu, H.H., Xu, F., Fortunato, E., Martins, R., Shan, F.K.: Fully solution-processed low-voltage aqueous in 2o3 thin-film transistors using an ultrathin ZrO x dielectric. ACS Appl. Mater. Interfaces 6, 17364–17369 (2014)

    Article  CAS  PubMed  Google Scholar 

  45. Seo, S., Lee, M.J., Seo, D.H., Jeoung, E.J., Suh, D.-S., Joung, Y.S., Yoo, I.K., Hwang, I.R., Kim, S.H., Byun, I.S., Kim, J.-S., Choi, J.S., Park, B.H.: Reproducible resistance switching in polycrystalline NiO films. Appl. Phys. Lett. 85, 5655–5657 (2004)

    Article  ADS  CAS  Google Scholar 

  46. Jang, W.L., Lu, Y.M., Hwang, W.S., Hsiung, T.L., Wang, H.P.: Point defects in sputtered NiO films. Appl. Phys. Lett. 94, 062103 (2009)

    Article  ADS  Google Scholar 

  47. Yang, J.L., Lai, Y.S., Chen, J.S.: Effect of heat treatment on the properties of non-stoichiometric p-type nickel oxide films deposited by reactive sputtering. Thin Solid Films 488, 242–246 (2005)

    Article  ADS  CAS  Google Scholar 

  48. Shaikh, J.S., Pawar, R.C., Devan, R.S., Ma, Y.R., Salvi, P.P., Kolekar, S.S., Patil, P.S.: Synthesis and characterization of Ru doped CuO thin films for supercapacitor based on Bronsted acidic ionic liquid. Electrochim. Acta 56, 2127–2134 (2011)

    Article  CAS  Google Scholar 

  49. Wang, Y., Lany, S., Ghanbaja, J., Fagot-Revurat, Y., Chen, Y.P., Soldera, F., Pierson, J.F.: Electronic structures of Cu2O, Cu4 O3, and CuO: a joint experimental and theoretical study. Phys. Rev. B 94, 245418 (2016)

    Article  ADS  Google Scholar 

  50. Gong, H., Zhang, Y., Cao, Y., Luo, M., Feng, Z., Yang, W., Liu, K., Cao, H., Yan, H.: Pt@Cu2O/WO3 composite photocatalyst for enhanced photocatalytic water oxidation performance. Appl. Catal. B 237, 309–317 (2018)

    Article  CAS  Google Scholar 

  51. Zhao, S., Chen, J., Liu, Y., Jiang, Y., Jiang, C., Yin, Z., Xiao, Y., Cao, S.: Silver nanoparticles confined in shell-in-shell hollow TiO2 manifesting efficiently photocatalytic activity and stability. Chem. Eng. J. 367, 249–259 (2019)

    Article  CAS  Google Scholar 

  52. Yin, Z., Xiao, Y., Wan, X., Jiang, Y., Chen, G., Shi, Q., Cao, S.: High photocatalytic activity of Cu2O embedded in hierarchically hollow SiO2 for efficient chemoselective hydrogenation of nitroarenes. J. Mater. Sci. 56, 3874–3886 (2021)

    Article  ADS  CAS  Google Scholar 

  53. Osorio-Guillén, J., Lany, S., Zunger, A.: Nonstoichiometry and hole doping in NiO. AIP Conf. Proc. 1199, 128–129 (2010)

    Article  ADS  Google Scholar 

  54. Wang, K.C., Shen, P.S., Li, M.H., Chen, S., Lin, M.W., Chen, P., Guo, T.F.: Low-temperature sputtered nickel oxide compact thin film as effective electron blocking layer for mesoscopic NiO/CH3NH3PbI3 perovskite heterojunction solar cells. ACS Appl. Mater. Interfaces 6, 11851–11858 (2014)

    Article  CAS  PubMed  Google Scholar 

  55. Kwon, U., Kim, B.G., Nguyen, D.C., Park, J.H., Ha, N.Y., Kim, S.J., Ko, S.H., Lee, S., Lee, D., Park, H.J.: Solution-processible crystalline NiO nanoparticles for high-performance planar perovskite photovoltaic cells. Sci. Rep. 6, 30759 (2016)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  56. Salunkhe, P., Av, M.A., Kekuda, D.: Structural, spectroscopic and electrical properties of dc magnetron sputtered NiO thin films and an insight into different defect states. Appl. Phys. A 127, 390 (2021)

    Article  ADS  CAS  Google Scholar 

  57. Roberts, M.W., Smart, R.S.C.: The defect structure of nickel oxide surfaces as revealed by photoelectron spectroscopy. J. Chem. Soc. Faraday Trans. 1(80), 2957–2968 (1984)

    Article  Google Scholar 

  58. Usha, K.S., Sivakumar, R., Sanjeeviraja, C., Sathe, V., Ganesan, V., Wang, T.Y.: Improved electrochromic performance of a radio frequency magnetron sputtered NiO thin film with high optical switching speed. RSC Adv. 6, 79668–79680 (2016)

    Article  ADS  CAS  Google Scholar 

  59. Sawicka-Chudy, P., Sibiński, M., Rybak-Wilusz, E., Cholewa, M., Wisz, G., Yavorskyi, R.: Review of the development of copper oxides with titanium dioxide thin-film solar cells. AIP Adv. 10, 11 (2020)

    Article  Google Scholar 

  60. Lam, N.D.: Modelling and numerical analysis of ZnO/CuO/Cu 2 O heterojunction solar cell using SCAPS. Eng. Res. Express 2, 025033 (2020)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

Support from the Fostering Global Talents for Innovative Growth Program of the KIAT (P0017308), the Next-Generation Power Semiconductor Development of the KEIT (RS-2022-00154720), and a research grant provided by Kwangwoon University in 2023, made this work possible.

Author information

Authors and Affiliations

Authors

Contributions

H-JL: Conceptualization; investigation; writing–original draft; visualization. S-YM: Formal analysis; data curation. K-YL: Writing–review & editing; supervision. S-MK: Writing–review & editing; supervision; project administration; funding acquisition.

Corresponding author

Correspondence to Sang-Mo Koo.

Ethics declarations

Conflict of interest

The authors have no conflicts to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, HJ., Moon, SY., Lee, KY. et al. Impact of Post-Deposition Annealing on Electrical Properties of RF-Sputtered Cu2O/4H-SiC and NiO/4H-SiC PiN Diodes. Electron. Mater. Lett. (2024). https://doi.org/10.1007/s13391-024-00484-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13391-024-00484-1

Keywords

Navigation