Skip to main content
Log in

Bipolar Resistive Switching Characteristics of Ta/TaxMnyOz/Pt Structure for ReRAM Application with Large Resistance Window

  • Original Article - Electronics, Magnetics and Photonics
  • Published:
Electronic Materials Letters Aims and scope Submit manuscript

Abstract

In this study, a resistive random-access memory device based on a Ta/TaxMnyOz/Pt metal–insulator–metal structure was fabricated and examined. The test device exhibited stable bipolar resistive switching characteristics with DC endurance of more than 300 cycles and robust retention up to 104 s at room temperature. Moreover, the device had a low forming voltage and a resistance window of ~ 103. The conduction mechanism in each resistance state of the device was analyzed through current–voltage curve fitting. It was confirmed that the primary conduction mechanisms were ohmic and Poole–Frenkel conduction in the low- and high-resistance states, respectively. By analyzing the cross section of the fabricated device through transmission electron microscopy, it was found that the TaxMnyOz layer was deposited in amorphous form. The composition and chemical bonding state of the TaxMnyOz layer were also analyzed using X-ray photoelectron spectroscopy. With these characteristics, the amorphous TaxMnyOz layer has strong potential for nonvolatile memory applications.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Wang, C., Wu, H., Gao, B., Zhang, T., Yang, Y., Qian, H.: Conduction mechanisms, dynamics and stability in ReRAMs. Microelectron. Eng. 187–188, 121–133 (2018). https://doi.org/10.1016/j.mee.2017.11.003

    Article  CAS  Google Scholar 

  2. Ielmini, D.: Resistive switching memories based on metal oxides: mechanisms, reliability and scaling. Semicond. Sci. Technol. 31, 063002 (2016). https://doi.org/10.1088/0268-1242/31/6/063002

    Article  CAS  Google Scholar 

  3. Chen, Y.: ReRAM: history, status, and future. IEEE Trans. Electron. Devices. 67, 1420–1433 (2020). https://doi.org/10.1109/TED.2019.2961505

    Article  CAS  Google Scholar 

  4. Zahoor, F., Azni Zulkifli, T.Z., Khanday, F.A.: Resistive random access memory (RRAM): an overview of materials, switching mechanism, performance, multilevel cell (mlc) storage, modeling, and applications. Nanoscale Res. Lett. 15, 90 (2020). https://doi.org/10.1186/s11671-020-03299-9

    Article  CAS  Google Scholar 

  5. Prakash, R., Sharma, S., Kumar, A., Kaur, D.: Improved resistive switching performance in Cu-cation migrated MoS2 based ReRAM device incorporated with tungsten nitride bottom electrode. Curr. Appl. Phys. 19, 260–265 (2019). https://doi.org/10.1016/j.cap.2018.10.013

    Article  Google Scholar 

  6. Hsieh, W.K., Lam, K.T., Chang, S.J.: Characteristics of tantalum-doped silicon oxide-based resistive random access memory. Mater. Sci. Semicond. Process. 27, 293–296 (2014). https://doi.org/10.1016/j.mssp.2014.06.032

    Article  CAS  Google Scholar 

  7. Chang, K.-C., Tsai, T.-M., Chang, T.-C., Wu, H.-H., Chen, K.-H., Chen, J.-H., Young, T.-F., Chu, T.-J., Chen, J.-Y., Pan, C.-H., Su, Y.-T., Syu, Y.-E., Tung, C.-W., Chang, G.-W., Chen, M.-C., Huang, H.-C., Tai, Y.-H., Gan, D.-S., Wu, J.-J., Hu, Y., Sze, S.M.: Low temperature improvement method on Zn:SiOx resistive random access memory devices. IEEE Electron Dev. Lett. 34, 511–513 (2013). https://doi.org/10.1109/LED.2013.2248075

    Article  CAS  Google Scholar 

  8. Chang, K.C., Tsai, T.M., Chang, T.C., Syu, Y.E., Chuang, S.L., Li, C.H., Gan, D.S., Sze, S.M.: The effect of silicon oxide based RRAM with tin doping. Electrochem. Solid State Lett. 15, H65 (2012). https://doi.org/10.1149/2.013203esl

    Article  CAS  Google Scholar 

  9. Chang, T.C., Chang, K.C., Tsai, T.M., Chu, T.J., Sze, S.M.: Resistance random access memory. Mater. Today. 19, 254–264 (2016). https://doi.org/10.1016/j.mattod.2015.11.009

    Article  CAS  Google Scholar 

  10. Böttger, U., von Witzleben, M., Havel, V., Fleck, K., Rana, V., Waser, R., Menzel, S.: Picosecond multilevel resistive switching in tantalum oxide thin films. Sci. Rep. 10, 16391 (2020). https://doi.org/10.1038/s41598-020-73254-2

    Article  CAS  Google Scholar 

  11. Kim, T., Son, H., Kim, I., Kim, J., Lee, S., Park, J.K., Kwak, J.Y., Park, J., Jeong, Y.J.: Reversible switching mode change in Ta2O5-based resistive switching memory (ReRAM). Sci. Rep. 10, 11247 (2020). https://doi.org/10.1038/s41598-020-68211-y

    Article  CAS  Google Scholar 

  12. Zhang, S., Long, S., Guan, W., Liu, Q., Wang, Q., Liu, M.: Resistive switching characteristics of MnOx-based ReRAM. J. Phys. D Appl. Phys. 42, 055112 (2009). https://doi.org/10.1088/0022-3727/42/5/055112

    Article  CAS  Google Scholar 

  13. Yang, M.K., Park, J.W., Ko, T.K., Lee, J.K.: Bipolar resistive switching behavior in Ti/MnO2/Pt structure for nonvolatile memory devices. Appl. Phys. Lett. 95, 42105 (2009). https://doi.org/10.1063/1.3191674

    Article  CAS  Google Scholar 

  14. Hu, Q., Park, M.R., Abbas, H., Kang, T.S., Yoon, T.S., Kang, C.J.: Forming-free resistive switching characteristics in tantalum oxide and manganese oxide based crossbar array structure. Microelectron. Eng. 190, 7–10 (2018)

    Article  CAS  Google Scholar 

  15. Lee, N.J., Kang, T.S., Hu, Q., Lee, T.S., Yoon, T.-S., Lee, H.H., Yoo, E.J., Choi, Y.J., Kang, C.J.: Tri-state resistive switching characteristics of MnO/Ta2O5 resistive random access memory device by a controllable reset process. J. Phys. D. Appl. Phys. 51(22), 225102 (2018)

    Article  Google Scholar 

  16. Atanassova, E., Dimitrova, T., Koprinarova, J.: AES and XPS study of thin RF-sputtered Ta2O5 layers. Appl. Surf. Sci. 84, 193–202 (1995). https://doi.org/10.1016/0169-4332(94)00538-9

    Article  CAS  Google Scholar 

  17. An, B.S., Kwon, Y., Oh, J.S., Lee, M., Pae, S., Yang, C.W.: Amorphous TaxMnyOz layer as a diffusion barrier for advanced copper interconnects. Sci. Rep. 9, 1–10 (2019). https://doi.org/10.1038/s41598-019-56796-y

    Article  CAS  Google Scholar 

  18. Chen, J., Zhu, B., Sun, Y., Yin, S., Zhu, Z., Li, J.: Investigation of low-temperature selective catalytic reduction of NOx with ammonia over Mn-modified Fe2O3/AC catalysts. J. Braz. Chem. Soc. (2017). https://doi.org/10.21577/0103-5053.20170116

    Article  Google Scholar 

  19. Ramírez, A., Hillebrand, P., Stellmach, D., May, M.M., Bogdanoff, P., Fiechter, S.: Evaluation of MnOx, Mn2O3, and Mn3O4 electrodeposited films for the oxygen evolution reaction of water. J. Phys. Chem. C. 118, 14073–14081 (2014). https://doi.org/10.1021/jp500939d

    Article  CAS  Google Scholar 

  20. Biesinger, M.C., Lau, L.W.M., Gerson, A.R., Smart, RSt.C.: Smart, Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Sc, Ti, V, Cu and Zn. Appl. Surf. Sci. 257, 887–898 (2010). https://doi.org/10.1016/j.apsusc.2010.07.086

    Article  CAS  Google Scholar 

  21. Biesinger, M.C., Brown, C., Mycroft, J.R., Davidson, R.D., McIntyre, N.S.: X-ray photoelectron spectroscopy studies of chromium compounds. Surf. Interface Anal. 36, 1550–1563 (2004). https://doi.org/10.1002/sia.1983

    Article  CAS  Google Scholar 

  22. di Castro, V., Polzonetti, G.: XPS study of MnO oxidation. J. Electron. SpectrosC Relat. Phenom. 48, 117–123 (1989). https://doi.org/10.1016/0368-2048(89)80009-X.A

    Article  Google Scholar 

  23. Younis, S.E., Shirsath, B., Shabbir, S.L.: Controllable dynamics of oxygen vacancies through extrinsic doping for superior catalytic activities. Nanoscale 10, 18576–18585 (2018). https://doi.org/10.1039/C8NR03801E

    Article  CAS  Google Scholar 

  24. Huang, J.-J., Kuo, C.-W., Chang, W.-C., Hou, T.-H.: Transition of stable rectification to resistive-switching in Ti/TiO2/Pt oxide diode. Appl. Phys. Lett. 96, 262901 (2010). https://doi.org/10.1063/1.3457866

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by Samsung Electronics Co., Ltd. (IO201211-08069-01) and by the Korea Basic Science Institute(KBSI) National Research Facilities & Equipment Center(NFEC) grant funded by the Korea government(Ministry of Education) (No. 2019R1A6C1010031). The authors are grateful for the support of the Cooperative Center for Research Facilities at Sungkyunkwan University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cheol-Woong Yang.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, Y., Jo, KJ., Oh, JS. et al. Bipolar Resistive Switching Characteristics of Ta/TaxMnyOz/Pt Structure for ReRAM Application with Large Resistance Window. Electron. Mater. Lett. 20, 26–32 (2024). https://doi.org/10.1007/s13391-023-00440-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13391-023-00440-5

Keywords

Navigation