Skip to main content
Log in

Effect of Surface Termination on Carrier Dynamics of Metal Halide Perovskites: Ab Initio Quantum Dynamics Study

  • Original Article - Theory, Characterization and Modeling
  • Published:
Electronic Materials Letters Aims and scope Submit manuscript

Abstract

Metal halide perovskites (MHPs) have attracted considerable attentions as promising candidates for next-generation optoelectronic devices, such as light-emitting diode (LED), owing to their outstanding photophysical properties. Nanostructuring is considered an essential approach to facilitate the bright emission of MHPs, which entails an increase in the surface domain that can directly affect the carrier dynamics. However, a comprehensive understanding of the surface termination effect on the photodynamic properties of MHPs is still lacking. Herein, we systematically investigate the effect of surface termination on the carrier recombination dynamics of CsPbBr3 using ab-initio non-adiabatic molecular dynamics simulations. We found separate localizations of electron and hole carriers in the vicinity of the more and less coordinated inorganic polyhedral, respectively, which can be explained by the energy level changes associated with the modifications in Pb–Br bond lengths and their anharmonicity. This leads to the spatial separation of charge carriers, which retards the radiative kinetics more than the non-radiative one, reducing the photoluminescence quantum yield (PLQY). We further found that the homogenous linewidth is broadened upon introduction of surface terminations. Thus, our study suggests a possible LED-performance degradation mechanism due to surface termination, and thereby proposes guidelines for enhancing the light-emission properties of nanostructured MHPs.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Yoon, S.M., Min, H., Kim, J.B., Kim, G., Lee, K.S., Seok, S.I.: Surface engineering of ambient-air-processed cesium lead triiodide layers for efficient solar cells. Joule 5, 183–196 (2021). https://doi.org/10.1016/j.joule.2020.11.020

    Article  CAS  Google Scholar 

  2. Park, N.-G., Segawa, H.: Research direction toward theoretical efficiency in perovskite solar cells. ACS Photon. 5, 2970–2977 (2018). https://doi.org/10.1021/acsphotonics.8b00124

    Article  CAS  Google Scholar 

  3. Sha, W.E., Ren, X., Chen, L., Choy, W.C.: The efficiency limit of CH3NH3PbI3 perovskite solar cells. Appl. Phys. Lett. 106, 221104 (2015). https://doi.org/10.1063/1.4922150

    Article  CAS  Google Scholar 

  4. Kovalenko, M.V., Protesescu, L., Bodnarchuk, M.I.: Properties and potential optoelectronic applications of lead halide perovskite nanocrystals. Science 358, 745–750 (2017). https://doi.org/10.1126/science.aam7093

    Article  CAS  Google Scholar 

  5. Kang, J., Wang, L.-W.: High defect tolerance in lead halide perovskite CsPbBr3. J. Phys. Chem. Lett. 8, 489–493 (2017). https://doi.org/10.1021/acs.jpclett.6b02800

    Article  CAS  Google Scholar 

  6. Miller, O.D., Yablonovitch, E., Kurtz, S.R.: Strong internal and external luminescence as solar cells approach the Shockley–Queisser limit. IEEE Journal of Photovoltaics. 2, 303–311 (2012). https://doi.org/10.1109/JPHOTOV.2012.2198434

    Article  Google Scholar 

  7. Wang, J., Fu, W., Jariwala, S., Sinha, I., Jen, A.K.-Y., Ginger, D.S.: Reducing surface recombination velocities at the electrical contacts will improve perovskite photovoltaics. ACS Energy Lett. 4, 222–227 (2018). https://doi.org/10.1021/acsenergylett.8b02058

    Article  CAS  Google Scholar 

  8. Tan, Z.-K., Moghaddam, R.S., Lai, M.L., Docampo, P., Higler, R., Deschler, F., Price, M., Sadhanala, A., Pazos, L.M., Credgington, D., Hanusch, F., Bein, T., Snaith, H.J., Richard, H.F.: Bright light-emitting diodes based on organometal halide perovskite. Nat. Nanotechnol. 9, 687–692 (2014)

    Article  CAS  Google Scholar 

  9. Kim, J.S., Heo, J.-M., Park, G.-S., Woo, S.-J., Cho, C., Yun, H.J., Kim, D.-H., Park, J., Lee, S.-C., Park, S.-H., Yoon, E., Greenham, N.C., Lee, T.-W.: Ultra-bright, efficient and stable perovskite light-emitting diodes. Nature 611, 688–694 (2022)

    Article  CAS  Google Scholar 

  10. Wu, J., Cha, H., Du, T., Dong, Y., Xu, W., Lin, C.T., Durrant, J.R.: A comparison of charge carrier dynamics in organic and perovskite solar cells. Adv. Mater. 34, 2101833 (2022). https://doi.org/10.1002/adma.202101833

    Article  CAS  Google Scholar 

  11. Stranks, S.D., Eperon, G.E., Grancini, G., Menelaou, C., Alcocer, M.J., Leijtens, T., Herz, L.M., Petrozza, A., Snaith, H.J.: Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber. Science 342, 341–344 (2013). https://doi.org/10.1126/science.1243982

    Article  CAS  Google Scholar 

  12. Cho, H., Jeong, S.-H., Park, M.-H., Kim, Y.-H., Wolf, C., Lee, C.-L., Heo, J.H., Sadhanala, A., Myoung, N., Yoo, S., Im, S.H., Friend, R.H., Lee, T.-W.: Overcoming the electroluminescence efficiency limitations of perovskite light-emitting diodes. Science 350, 1222–1225 (2015). https://doi.org/10.1126/science.aad1818

    Article  CAS  Google Scholar 

  13. Liu, X.-K., Xu, W., Bai, S., Jin, Y., Wang, J., Friend, R.H., Gao, F.: Metal halide perovskites for light-emitting diodes. Nat. Mater. 20, 10–21 (2021)

    Article  CAS  Google Scholar 

  14. Quan, L.N., Zhao, Y., García de Arquer, F.P., Sabatini, R., Walters, G., Voznyy, O., Comin, R., Li, Y., Fan, J.Z., Tan, H., Pan, J., Yuan, M., Bakr, O.M., Lu, Z., Kim, D.H., Sargent, E.H.: Tailoring the energy landscape in quasi-2D halide perovskites enables efficient green-light emission. Nano Lett. 17, 3701–3709 (2017). https://doi.org/10.1021/acs.nanolett.7b00976

    Article  CAS  Google Scholar 

  15. Protesescu, L., Yakunin, S., Bodnarchuk, M.I., Krieg, F., Caputo, R., Hendon, C.H., Yang, R.X., Walsh, A., Kovalenko, M.V.: Nanocrystals of cesium lead halide perovskites (CsPbX3, X= Cl, Br, and I): novel optoelectronic materials showing bright emission with wide color gamut. Nano Lett. 15, 3692–3696 (2015). https://doi.org/10.1021/nl5048779

    Article  CAS  Google Scholar 

  16. Rainò, G., Yazdani, N., Boehme, S.C., Kober-Czerny, M., Zhu, C., Krieg, F., Rossell, M.D., Erni, R., Wood, V., Infante, I., Kovalenko, M.V.: Ultra-narrow room-temperature emission from single CsPbBr3 perovskite quantum dots. Nat. Commun. 13, 1–8 (2022)

    Article  Google Scholar 

  17. Sutherland, B.R., Sargent, E.H.: Perovskite photonic sources. Nat. Photonics. 10, 295–302 (2016)

    Article  CAS  Google Scholar 

  18. Mei, X., Jia, D., Chen, J., Zheng, S., Zhang, X.: Approaching high-performance light-emitting devices upon perovskite quantum dots: advances and prospects. Nano Today 43, 101449 (2022). https://doi.org/10.1016/j.nantod.2022.101449

    Article  CAS  Google Scholar 

  19. Choi, Y.J., Debbichi, L., Lee, D.-K., Park, N.-G., Kim, H., Kim, D.: Light emission enhancement by tuning the structural phase of APbBr3 (A= CH3NH3, Cs) Perovskites. J. Phys. Chem. Lett. 10, 2135–2142 (2019). https://doi.org/10.1021/acs.jpclett.9b00829

    Article  CAS  Google Scholar 

  20. Lee, J.-W., Choi, Y.J., Yang, J.-M., Ham, S., Jeon, S.K., Lee, J.Y., Song, Y.-H., Ji, E.K., Yoon, D.-H., Seo, S., Shin, H., Han, G.S., Jung, H.S., Kim, D., Park, N.-G.: In-situ formed type I nanocrystalline perovskite film for highly efficient light-emitting diode. ACS Nano 11, 3311–3319 (2017). https://doi.org/10.1021/acsnano.7b00608

    Article  CAS  Google Scholar 

  21. Xing, G., Wu, B., Wu, X., Li, M., Du, B., Wei, Q., Guo, J., Yeow, E.K., Sum, T.C., Huang, W.: Transcending the slow bimolecular recombination in lead-halide perovskites for electroluminescence. Nat. Commun. 8, 1–9 (2017)

    Article  Google Scholar 

  22. Baranowski, M., Galkowski, K., Surrente, A., Urban, J., Klopotowski, L., Mackowski, S., Maude, D.K., Ben Aich, R., Boujdaria, K., Chamarro, M.: Giant fine structure splitting of the bright exciton in a bulk MAPbBr3 single crystal. Nano Lett. 19, 7054–7061 (2019). https://doi.org/10.1021/acs.nanolett.9b02520

    Article  CAS  Google Scholar 

  23. Bohn, B.J., Tong, Y., Gramlich, M., Lai, M.L., Dblinger, M., Wang, K., Hoye, R.L., Muller-Buschbaum, P., Stranks, S.D., Urban, A.S., Polavarapu, L., Feldmann, J.: Boosting tunable blue luminescence of halide perovskite nanoplatelets through postsynthetic surface trap repair. Nano Lett. 18, 5231–5238 (2018). https://doi.org/10.1021/acs.nanolett.8b02190

    Article  CAS  Google Scholar 

  24. Almeida, G., Infante, I., Manna, L.: Resurfacing halide perovskite nanocrystals. Science 364, 833–834 (2019). https://doi.org/10.1126/science.aax5825

    Article  CAS  Google Scholar 

  25. Sherkar, T.S., Momblona, C., Gil-Escrig, L., Ávila, J., Sessolo, M., Bolink, H.J., Koster, L.J.A.: Recombination in perovskite solar cells: significance of grain boundaries, interface traps, and defect ions. ACS Energy Lett. 2, 1214–1222 (2017). https://doi.org/10.1021/acsenergylett.7b00236

    Article  CAS  Google Scholar 

  26. Shi, R., Vasenko, A.S., Long, R., Prezhdo, O.V.: Edge influence on charge carrier localization and lifetime in CH3NH3PbBr3 perovskite: Ab initio quantum dynamics simulation. J. Phys. Chem. Lett. 11, 9100–9109 (2020). https://doi.org/10.1021/acs.jpclett.0c02800

    Article  CAS  Google Scholar 

  27. Kim, J., Lee, S.-H., Lee, J.H., Hong, K.-H.: The role of intrinsic defects in methylammonium lead iodide perovskite. J. Phys. Chem. Lett. 5, 1312–1317 (2014). https://doi.org/10.1021/jz500370k

    Article  CAS  Google Scholar 

  28. Haruyama, J., Sodeyama, K., Han, L., Tateyama, Y.: Termination dependence of tetragonal CH3NH3PbI3 surfaces for perovskite solar cells. J. Phys. Chem. Lett. 5, 2903–2909 (2014). https://doi.org/10.1021/jz501510v

    Article  CAS  Google Scholar 

  29. Gao, F., Zhao, Y., Zhang, X., You, J.: Recent progresses on defect passivation toward efficient perovskite solar cells. Adv. Energy Mater. 10, 1902650 (2020). https://doi.org/10.1002/aenm.201902650

    Article  CAS  Google Scholar 

  30. Blancon, J.-C., Tsai, H., Nie, W., Stoumpos, C.C., Pedesseau, L., Katan, C., Kepenekian, M., Soe, C.M.M., Appavoo, K., Sfeir, M.Y., Tretiak, S., Ajayan, P.M., Kanatzidis, M.G., Even, J., Crochet, J.J., Mohite, A.D.: Extremely efficient internal exciton dissociation through edge states in layered 2D perovskites. Science 355, 1288–1292 (2017). https://doi.org/10.1126/science.aal4211

    Article  CAS  Google Scholar 

  31. Lu, J., Zhou, C., Chen, W., Wang, X., Jia, B., Wen, X.: Origin and physical effects of edge states in two-dimensional Ruddlesden–Popper perovskites. iScience (2022). https://doi.org/10.1016/j.isci.2022.104420

    Article  CAS  Google Scholar 

  32. Ha, Y., Park, J.-G., Hong, K.-H., Kim, H.: Enhanced light emission through symmetry engineering of halide perovskites. J. Am. Chem. Soc. (2021). https://doi.org/10.1021/jacs.1c09891

    Article  CAS  Google Scholar 

  33. Prezhdo, O.V.: Modeling non-adiabatic dynamics in nanoscale and condensed matter systems. Acc. Chem. Res. 54, 4239–4249 (2021). https://doi.org/10.1021/acs.accounts.1c00525

    Article  CAS  Google Scholar 

  34. Akimov, A.V., Prezhdo, O.V.: The PYXAID program for non-adiabatic molecular dynamics in condensed matter systems. J. Chem. Theory Comput. 9, 4959–4972 (2013). https://doi.org/10.1021/ct400641n

    Article  CAS  Google Scholar 

  35. Akimov, A.V., Prezhdo, O.V.: Advanced capabilities of the PYXAID program: integration schemes, decoherence effects, multiexcitonic states, and field-matter interaction. J. Chem. Theory Comput. 10, 789–804 (2014). https://doi.org/10.1021/ct400934c

    Article  CAS  Google Scholar 

  36. Agrawal, S., Lin, W., Prezhdo, O.V., Trivedi, D.J.: Ab initio quantum dynamics of charge carriers in graphitic carbon nitride nanosheets. J. Chem. Phys. 153, 054701 (2020). https://doi.org/10.1063/5.0010628

    Article  CAS  Google Scholar 

  37. Kim, T.W., Jun, S., Ha, Y., Yadav, R.K., Kumar, A., Yoo, C.-Y., Oh, I., Lim, H.-K., Shin, J.W., Ryoo, R., Kim, H., Kim, J., Baeg, J.-O., Ihee, H.: Ultrafast charge transfer coupled with lattice phonons in two-dimensional covalent organic frameworks. Nat. Commun. 10, 1–10 (2019)

    Google Scholar 

  38. Cheng, C., Fang, W.-H., Long, R., Prezhdo, O.V.: Water splitting with a single-atom Cu/TiO2 photocatalyst: atomistic origin of high efficiency and proposed enhancement by spin selection. JACS Au. 1, 550–559 (2021). https://doi.org/10.1021/jacsau.1c00004

    Article  CAS  Google Scholar 

  39. Long, R., Liu, J., Prezhdo, O.V.: Unravelling the effects of grain boundary and chemical doping on electron–hole recombination in CH3NH3PbI3 perovskite by time-domain atomistic simulation. J. Am. Chem. Soc. 138, 3884–3890 (2016). https://doi.org/10.1021/jacs.6b00645

    Article  CAS  Google Scholar 

  40. Long, R., Prezhdo, O.V.: Quantum coherence facilitates efficient charge separation at a MoS2/MoSe2 van der Waals junction. Nano Lett. 16, 1996–2003 (2016). https://doi.org/10.1021/acs.nanolett.5b05264

    Article  CAS  Google Scholar 

  41. Kim, Y.-H., Wolf, C., Kim, Y.-T., Cho, H., Kwon, W., Do, S., Sadhanala, A., Park, C.G., Rhee, S.-W., Im, S.H.: Highly efficient light-emitting diodes of colloidal metal–halide perovskite nanocrystals beyond quantum size. ACS Nano 11, 6586–6593 (2017). https://doi.org/10.1021/acsnano.6b07617

    Article  CAS  Google Scholar 

  42. Liang, M., Lin, W., Zhao, Q., Zou, X., Lan, Z., Meng, J., Shi, Q., Castelli, I.E., Canton, S.E., Pullerits, T., Zheng, K.: Free carriers versus self-trapped excitons at different facets of Ruddlesden–Popper two-dimensional lead halide perovskite single crystals. J. Phys. Chem. Lett. 12, 4965–4971 (2021). https://doi.org/10.1021/acs.jpclett.1c01148

    Article  CAS  Google Scholar 

  43. Kohn, W., Sham, L.J.: Self-consistent equations including exchange and correlation effects. Phys. Rev. 140, A1133 (1965)

    Article  Google Scholar 

  44. Tully, J.C.: Molecular dynamics with electronic transitions. J. Chem. Phys. 93, 1061–1071 (1990). https://doi.org/10.1063/1.459170

    Article  CAS  Google Scholar 

  45. Craig, C.F., Duncan, W.R., Prezhdo, O.V.: Trajectory surface hopping in the time-dependent Kohn–Sham approach for electron-nuclear dynamics. Phys. Rev. Lett. 95, 163001 (2005)

    Article  Google Scholar 

  46. Jaeger, H.M., Fischer, S., Prezhdo, O.V.: Decoherence-induced surface hopping. J. Chem. Phys. 137, 22A545 (2012). https://doi.org/10.1063/1.4757100

    Article  CAS  Google Scholar 

  47. Prezhdo, O.V., Pereverzev, Y.V.: Quantized Hamilton dynamics. J. Chem. Phys. 113, 6557–6565 (2000). https://doi.org/10.1063/1.1290288

    Article  CAS  Google Scholar 

  48. Kilina, S.V., Neukirch, A.J., Habenicht, B.F., Kilin, D.S., Prezhdo, O.V.: Quantum zeno effect rationalizes the phonon bottleneck in semiconductor quantum dots. Phys. Rev. Lett. 110, 180404 (2013). https://doi.org/10.1103/PhysRevLett.110.180404

    Article  CAS  Google Scholar 

  49. Trivedi, D.J., Prezhdo, O.V.: Decoherence allows model reduction in nonadiabatic dynamics simulations. J. Phys. Chem. A. 119, 8846–8853 (2015). https://doi.org/10.1021/acs.jpca.5b05869

    Article  CAS  Google Scholar 

  50. Perdew, J.P., Burke, K., Ernzerhof, M.: Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996). https://doi.org/10.1103/PhysRevLett.77.3865

    Article  CAS  Google Scholar 

  51. Grimme, S., Ehrlich, S., Goerigk, L.: Effect of the damping function in dispersion corrected density functional theory. J. Comput. Chem. 32, 1456–1465 (2011). https://doi.org/10.1002/jcc.21759

    Article  CAS  Google Scholar 

  52. Kresse, G., Furthmüller, J.: Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169 (1996). https://doi.org/10.1103/PhysRevB.54.11169

    Article  CAS  Google Scholar 

  53. Andersen, H.C.: Molecular dynamics simulations at constant pressure and/or temperature. J. Chem. Phys. 72, 2384–2393 (1980). https://doi.org/10.1063/1.439486

    Article  CAS  Google Scholar 

  54. Hammes-Schiffer, S., Tully, J.C.: Proton transfer in solution: molecular dynamics with quantum transitions. J. Chem. Phys. 101, 4657–4667 (1994). https://doi.org/10.1063/1.467455

    Article  CAS  Google Scholar 

  55. Mukamel, S.: Principles of nonlinear optical spectroscopy. Oxford University Press on Demand, Oxford (1999)

    Google Scholar 

  56. Einstein, A.: Zur quantentheorie der strahlung. Phys. Z. 18, 124 (1917)

    Google Scholar 

  57. Walsh, A.: Principles of chemical bonding and band gap engineering in hybrid organic–inorganic halide perovskites. J. Phys. Chem. C. 119, 5755–5760 (2015). https://doi.org/10.1021/jp512420b

    Article  CAS  Google Scholar 

  58. Marronnier, A., Lee, H., Geffroy, B., Even, J., Bonnassieux, Y., Roma, G.: Structural instabilities related to highly anharmonic phonons in halide perovskites. J. Phys. Chem. Lett. 8, 2659–2665 (2017). https://doi.org/10.1021/acs.jpclett.7b00807

    Article  CAS  Google Scholar 

  59. Li, W., Vasenko, A.S., Tang, J., Prezhdo, O.V.: Anharmonicity extends carrier lifetimes in lead halide perovskites at elevated temperatures. J. Phys. Chem. Lett. 10, 6219–6226 (2019). https://doi.org/10.1021/acs.jpclett.9b02553

    Article  CAS  Google Scholar 

  60. Ricci, F., Kim, T., Gao, W., Lin, Y., Ma, C.-Q., Goodson, T., III.: Coherent energy and charge transport processes in oligothiophene dendrimers probed in solution and in the solid state with time-resolved spectroscopy and microscopy methods. J. Phys. Chem. C. 123, 23419–23426 (2019). https://doi.org/10.1021/acs.jpcc.9b07262

    Article  CAS  Google Scholar 

  61. Kilina, S., Velizhanin, K.A., Ivanov, S., Prezhdo, O.V., Tretiak, S.: Surface ligands increase photoexcitation relaxation rates in CdSe quantum dots. ACS Nano 6, 6515–6524 (2012). https://doi.org/10.1021/nn302371q

    Article  CAS  Google Scholar 

  62. Liu, J., Kilina, S.V., Tretiak, S., Prezhdo, O.V.: Ligands slow down pure-dephasing in semiconductor quantum dots. ACS Nano 9, 9106–9116 (2015). https://doi.org/10.1021/acsnano.5b03255

    Article  CAS  Google Scholar 

  63. Moody, G., Kavir Dass, C., Hao, K., Chen, C.-H., Li, L.-J., Singh, A., Tran, K., Clark, G., Xu, X., Berghäuser, G.: Intrinsic homogeneous linewidth and broadening mechanisms of excitons in monolayer transition metal dichalcogenides. Nat. Commun. 6, 1–6 (2015)

    Article  Google Scholar 

  64. Akkerman, Q.A., Motti, S.G., Srimath Kandada, A.R., Mosconi, E., D’Innocenzo, V., Bertoni, G., Marras, S., Kamino, B.A., Miranda, L., De Angelis, F., Pertozza, A., Prato, M., Manna, L.: Solution synthesis approach to colloidal cesium lead halide perovskite nanoplatelets with monolayer-level thickness control. J. Am. Chem. Soc. 138, 1010–1016 (2016). https://doi.org/10.1021/jacs.5b12124

    Article  CAS  Google Scholar 

  65. Zhang, Z., Fang, W.-H., Long, R., Prezhdo, O.V.: Exciton dissociation and suppressed charge recombination at 2D perovskite edges: key roles of unsaturated halide bonds and thermal disorder. J. Am. Chem. Soc. 141, 15557–15566 (2019). https://doi.org/10.1021/jacs.9b06046

    Article  CAS  Google Scholar 

  66. Park, M.-H., Jeong, S.-H., Seo, H.-K., Wolf, C., Kim, Y.-H., Kim, H., Byun, J., Kim, J.S., Cho, H., Lee, T.-W.: Unravelling additive-based nanocrystal pinning for high efficiency organic-inorganic halide perovskite light-emitting diodes. Nano Energy 42, 157–165 (2017). https://doi.org/10.1016/j.nanoen.2017.10.012

    Article  CAS  Google Scholar 

  67. He, J., Fang, W.-H., Long, R., Prezhdo, O.V.: Bidentate Lewis bases are preferred for passivation of MAPbI3 surfaces: a time-domain ab initio analysis. Nano Energy. 79, 105491 (2021). https://doi.org/10.1016/j.nanoen.2020.105491

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge financial support from at National Research Foundation of Korea (NRF) grant funded by the Korean government (Grant Nos. NRF-2017R1A5A1015365 and NRF-2021R1A2C2009643), and technical support from the Korea Institute of Science and Technology Information (KISTI) National Supercomputing Center (KSC-2022-CRE-0278). K.-H.H. acknowledges the financial support from the National R&D Program through the Korean NRF (Grant Nos. NRF-2021R1A2B5B01002312).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ki-Ha Hong or Hyungjun Kim.

Ethics declarations

Competing interest

The authors declare no competing financial interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 172 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ha, Y., Son, Y., Paik, D. et al. Effect of Surface Termination on Carrier Dynamics of Metal Halide Perovskites: Ab Initio Quantum Dynamics Study. Electron. Mater. Lett. 19, 588–597 (2023). https://doi.org/10.1007/s13391-023-00428-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13391-023-00428-1

Keywords

Navigation