Skip to main content
Log in

Investigation of the Cobalt-Additive Role in Improving the Performance of Formamidium Lead Triiodide Based Solar Cells

  • Original Article - Energy and Sustainability
  • Published:
Electronic Materials Letters Aims and scope Submit manuscript

Abstract

Solar cell devices are one of the most promising technologies for generating green energy. Forefront perovskite-based solar cells have increased worldwide hope for solving global warming issues. Tight bandgap formamidinium lead iodide (TB-FAPbI3) perovskite as an active layer to absorb sunlight along with a desired electron transport layer (ETL) can produce efficient and stable perovskite solar cells (PSCs). Here, TB-FAPbI3 with tin oxide (SnO2) as an ETL was employed to fabricate PSCs. These PSCs recorded a low champion efficiency of 18.35%. A cobalt-doped SnO2 layer was designed to increase the efficiency of TB-FAPbI3 solar cells. The modified SnO2 boosted the solar cell efficiency to 20.10% due to the improved conductivity of the ETL and increased charge transfer phenomena in the PSCs. From one side, electron transfer is facilitated at the ETL/perovskite interface. On another side, the reduced surface defects on the fabricated perovskite layer over the modified ETL diminish charge traps in the solar cell. In addition, cobalt doping does not hinder the light transmission from the SnO2 into the perovskite layer. The modified SnO2 assists in the formation of a more compact TB-FAPbI3 layer and promotes the stability properties of PSCs.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

Data will be available based on reasonable request.

References

  1. Ahmed, D.S., Mohammed, B.K., Mohammed, M.K.: Long-term stable and hysteresis-free planar perovskite solar cells using green antisolvent strategy. J. Mater. Sci. 56(27), 15205–15214 (2021)

    Article  CAS  Google Scholar 

  2. Humadi, M.D., Hussein, H.T., Mohamed, M.S., Mohammed, M.K., Kayahan, E.: A facile approach to improve the performance and stability of perovskite solar cells via FA/MA precursor temperature controlling in sequential deposition fabrication. Opt. Mater. 112, 110794 (2021)

    Article  CAS  Google Scholar 

  3. Kumar, A., Singh, S., Al-Bahrani, M.: Enhancement in power conversion efficiency and stability of perovskite solar cell by reducing trap states using trichloroacetic acid additive in anti-solvent. Surf. Interfaces 34, 102341 (2022)

    Article  CAS  Google Scholar 

  4. Kumar, A., Singh, S., Sharma, A., Ahmed, E.M.: Efficient and stable perovskite solar cells by interface engineering at the interface of electron transport layer/perovskite. Opt. Mater. 132, 112846 (2022)

    Article  CAS  Google Scholar 

  5. Moharam, M.M., El Shazly, A.N., Anand, K.V., Rayan, D.E., Mohammed, M.K., Rashad, M.M., Shalan, A.E.: Semiconductors as effective electrodes for dye sensitized solar cell applications. Top. Curr. Chem. 379(3), 1–17 (2021)

    Google Scholar 

  6. Burschka, J., Pellet, N., Moon, S.-J., Humphry-Baker, R., Gao, P., Nazeeruddin, M.K., Grätzel, M.: Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature 499(7458), 316–319 (2013)

    Article  CAS  Google Scholar 

  7. Ball, J.M., Lee, M.M., Hey, A., Snaith, H.J.: Low-temperature processed meso-superstructured to thin-film perovskite solar cells. Energy Environ. Sci. 6(6), 1739–1743 (2013)

    Article  CAS  Google Scholar 

  8. Yang, W.S., Noh, J.H., Jeon, N.J., Kim, Y.C., Ryu, S., Seo, J., Seok, S.I.: High-performance photovoltaic perovskite layers fabricated through intramolecular exchange. Science 348(6240), 1234–1237 (2015)

    Article  CAS  Google Scholar 

  9. Saliba, M., Matsui, T., Seo, J.-Y., Domanski, K., Correa-Baena, J.-P., Nazeeruddin, M.K., Zakeeruddin, S.M., Tress, W., Abate, A., Hagfeldt, A.: Cesium-containing triple cation perovskite solar cells: improved stability, reproducibility and high efficiency. Energy Environ. Sci. 9(6), 1989–1997 (2016)

    Article  CAS  Google Scholar 

  10. Kadhim, M.J., Mohammed, M.K.: Fabrication of efficient triple-cation perovskite solar cells employing ethyl acetate as an environmental-friendly solvent additive. Mater. Res. Bull. 158, 112047 (2023)

    Article  CAS  Google Scholar 

  11. Majeed, S.M., Ahmed, D.S., Mohammed, M.K.: Anti-solvent engineering via potassium bromide additive for highly efficient and stable perovskite solar cells. Org. Electron. 99, 106310 (2021)

    Article  CAS  Google Scholar 

  12. Kojima, A., Teshima, K., Shirai, Y., Miyasaka, T.: Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 131(17), 6050–6051 (2009)

    Article  CAS  Google Scholar 

  13. Jeong, J., Kim, M., Seo, J., Lu, H., Ahlawat, P., Mishra, A., Yang, Y., Hope, M.A., Eickemeyer, F.T., Kim, M.: Pseudo-halide anion engineering for α-FAPbI3 perovskite solar cells. Nature 592(7854), 381–385 (2021)

    Article  CAS  Google Scholar 

  14. Bai, Y., Fang, Y., Deng, Y., Wang, Q., Zhao, J., Zheng, X., Zhang, Y., Huang, J.: Low temperature solution-processed Sb: SnO2 nanocrystals for efficient planar perovskite solar cells. ChemSusChem 9(18), 2686–2691 (2016)

    Article  CAS  Google Scholar 

  15. Mohammed, M.K., Al-Azzawi, R.K., Jasim, H.H., Mohammed, S.H., Singh, S., Kadhum, H.H., Kumar, A., Sasikumar, P., Revathy, M., Jabir, M.S.: Adaption of MAPbI3 perovskite with copper phthalocyanine inorganic hole transport layer via nitrosonium tetrafluoroborate additive to enhance performance and stability of perovskite solar cells. Opt. Mater. 133, 112901 (2022)

    Article  CAS  Google Scholar 

  16. Mohammed, M.K., Al-Mousoi, A.K., Singh, S., Younis, U., Kumar, A., Dastan, D., Ravi, G.: Ionic liquid passivator for mesoporous titanium dioxide electron transport layer to enhance the efficiency and stability of hole conductor-free perovskite solar cells. Energy Fuels 36(19), 12192–12200 (2022)

    Article  CAS  Google Scholar 

  17. Anaraki, E.H., Kermanpur, A., Steier, L., Domanski, K., Matsui, T., Tress, W., Saliba, M., Abate, A., Grätzel, M., Hagfeldt, A.: Highly efficient and stable planar perovskite solar cells by solution-processed tin oxide. Energy Environ. Sci. 9(10), 3128–3134 (2016)

    Article  CAS  Google Scholar 

  18. Ke, W., Fang, G., Liu, Q., Xiong, L., Qin, P., Tao, H., Wang, J., Lei, H., Li, B., Wan, J.: Low-temperature solution-processed tin oxide as an alternative electron transporting layer for efficient perovskite solar cells. J. Am. Chem. Soc. 137(21), 6730–6733 (2015)

    Article  CAS  Google Scholar 

  19. Bencherif, H., Hossain, M.K.: Design and numerical investigation of efficient (FAPbI3)1–x(CsSnI3)x perovskite solar cell with optimized performances. Sol. Energy 248, 137–148 (2022)

    Article  CAS  Google Scholar 

  20. Bencherif, H., Meddour, F., Elshorbagy, M., Hossain, M.K., Cuadrado, A., Abdi, M., Bendib, T., Kouda, S., Alda, J.: Performance enhancement of (FAPbI3)1–x(MAPbBr3)x perovskite solar cell with an optimized design. Micro Nanostruct. 171, 207403 (2022)

    Article  CAS  Google Scholar 

  21. Pandey, R., Bhattarai, S., Sharma, K., Madan, J., Al-Mousoi, A.K., Mohammed, M.K., Hossain, M.K.: Halide composition engineered a non-toxic perovskite-silicon tandem solar cell with 30.7% conversion efficiency. ACS Appl. Electron. Mater. (2023). https://doi.org/10.1021/acsaelm.2c01574

    Article  Google Scholar 

  22. Song, J., Zheng, E., Bian, J., Wang, X.-F., Tian, W., Sanehira, Y., Miyasaka, T.: Low-temperature SnO2-based electron selective contact for efficient and stable perovskite solar cells. J. Mater. Chem. A 3(20), 10837–10844 (2015)

    Article  CAS  Google Scholar 

  23. Méndez, P.F., Muhammed, S.K., Barea, E.M., Masi, S., Mora-Sero, I.: Analysis of the UV–ozone-treated SnO2 electron transporting layer in planar perovskite solar cells for high performance and reduced hysteresis. Sol. RRL 3(9), 1900191 (2019)

    Article  Google Scholar 

  24. Song, J., Li, G., Wang, D., Sun, W., Wu, J., Lan, Z.: High-efficiency low-temperature-processed mesoscopic perovskite solar cells from SnO2 nanorod self-assembled microspheres. Sol. RRL 4(4), 1900558 (2020)

    Article  CAS  Google Scholar 

  25. Mohammed, M.K., Sarusi, G., Sakthivel, P., Ravi, G., Younis, U.: Improved stability of ambient air-processed methylammonium lead iodide using carbon nanotubes for perovskite solar cells. Mater. Res. Bull. 137, 111182 (2021)

    Article  CAS  Google Scholar 

  26. Mohammed, M.K., Al-Mousoi, A.K., Majeed, S.M., Singh, S., Kumar, A., Pandey, R., Madan, J., Ahmed, D.S., Dastan, D.: Stable hole-transporting material-free perovskite solar cells with efficiency exceeding 14% via the introduction of a malonic acid additive for a perovskite precursor. Energy Fuels 36(21), 13187–13194 (2022)

    Article  CAS  Google Scholar 

  27. Hossain, M.K., Arnab, A., Das, R.C., Hossain, K., Rubel, M., Rahman, M.F., Bencherif, H., Emetere, M., Mohammed, M.K., Pandey, R.: Combined DFT, SCAPS-1D, and wxAMPS frameworks for design optimization of efficient Cs2BiAgI6-based perovskite solar cells with different charge transport layers. RSC Adv. 12(54), 35002–35025 (2022)

    Article  Google Scholar 

  28. Wang, C., Zhang, C., Wang, S., Liu, G., Xia, H., Tong, S., He, J., Niu, D., Zhou, C., Ding, K.: Low-temperature processed, efficient, and highly reproducible cesium-doped triple cation perovskite planar heterojunction solar cells. Sol. Rrl 2(2), 1700209 (2018)

    Article  Google Scholar 

  29. Liu, D., Wang, Y., Xu, H., Zheng, H., Zhang, T., Zhang, P., Wang, F., Wu, J., Wang, Z., Chen, Z.: SnO2-based perovskite solar cells: configuration design and performance improvement. Sol. RRL 3(2), 1800292 (2019)

    Article  Google Scholar 

  30. Huang, X., Du, J., Guo, X., Lin, Z., Ma, J., Su, J., Feng, L., Zhang, C., Zhang, J., Chang, J.: Polyelectrolyte-doped SnO2 as a tunable electron transport layer for high-efficiency and stable perovskite solar cells. Sol. RRL 4(1), 1900336 (2020)

    Article  CAS  Google Scholar 

  31. Xu, X., Xu, Z., Tang, J., Zhang, X., Zhang, L., Wu, J., Lan, Z.: High-performance planar perovskite solar cells based on low-temperature solution-processed well-crystalline SnO2 nanorods electron-transporting layers. Chem. Eng. J. 351, 391–398 (2018)

    Article  CAS  Google Scholar 

  32. Zhu, Z., Bai, Y., Liu, X., Chueh, C.C., Yang, S., Jen, A.K.Y.: Enhanced efficiency and stability of inverted perovskite solar cells using highly crystalline SnO2 nanocrystals as the robust electron-transporting layer. Adv. Mater. 28(30), 6478–6484 (2016)

    Article  CAS  Google Scholar 

  33. Jiang, Q., Zhang, L., Wang, H., Yang, X., Meng, J., Liu, H., Yin, Z., Wu, J., Zhang, X., You, J.: Enhanced electron extraction using SnO2 for high-efficiency planar-structure HC(NH2)2PbI3-based perovskite solar cells. Nat. Energy 2(1), 1–7 (2016)

    Article  Google Scholar 

  34. Yang, G., Lei, H., Tao, H., Zheng, X., Ma, J., Liu, Q., Ke, W., Chen, Z., Xiong, L., Qin, P.: Reducing hysteresis and enhancing performance of perovskite solar cells using low-temperature processed Y-doped SnO2 nanosheets as electron selective layers. Small 13(2), 1601769 (2017)

    Article  Google Scholar 

  35. Hasan, S.A.U., Lee, D.S., Im, S.H., Hong, K.-H.: Present status and research prospects of tin-based perovskite solar cells. Solar RRL 4(2), 1900310 (2020)

    Article  Google Scholar 

  36. Yang, D., Yang, R., Wang, K., Wu, C., Zhu, X., Feng, J., Ren, X., Fang, G., Priya, S., Liu, S.F.: High efficiency planar-type perovskite solar cells with negligible hysteresis using EDTA-complexed SnO2. Nat. Commun. 9(1), 1–11 (2018)

    Google Scholar 

  37. Lee, Y., Paek, S., Cho, K.T., Oveisi, E., Gao, P., Lee, S., Park, J.-S., Zhang, Y., Humphry-Baker, R., Asiri, A.M.: Enhanced charge collection with passivation of the tin oxide layer in planar perovskite solar cells. J. Mater. Chem. A 5(25), 12729–12734 (2017)

    Article  CAS  Google Scholar 

  38. Wang, Y., Duan, C., Li, J., Han, W., Zhao, M., Yao, L., Wang, Y., Yan, C., Jiu, T.: Performance enhancement of inverted perovskite solar cells based on smooth and compact PC61BM: SnO2 electron transport layers. ACS Appl. Mater. Interfaces 10(23), 20128–20135 (2018)

    Article  CAS  Google Scholar 

  39. Liu, Z., Sun, B., Liu, X., Han, J., Ye, H., Tu, Y., Chen, C., Shi, T., Tang, Z., Liao, G.: 15% efficient carbon based planar-heterojunction perovskite solar cells using a TiO2/SnO2 bilayer as the electron transport layer. J. Mater. Chem. A 6(17), 7409–7419 (2018)

    Article  CAS  Google Scholar 

  40. Wang, D., Wu, C., Luo, W., Guo, X., Qu, B., Xiao, L., Chen, Z.: ZnO/SnO2 double electron transport layer guides improved open circuit voltage for highly efficient CH3NH3PbI3-based planar perovskite solar cells. ACS Appl. Energy Mater. 1(5), 2215–2221 (2018)

    Article  CAS  Google Scholar 

  41. Liu, X., Zhang, Y., Shi, L., Liu, Z., Huang, J., Yun, J.S., Zeng, Y., Pu, A., Sun, K., Hameiri, Z.: Exploring inorganic binary alkaline halide to passivate defects in low-temperature-processed planar-structure hybrid perovskite solar cells. Adv. Energy Mater. 8(20), 1800138 (2018)

    Article  Google Scholar 

  42. Park, M., Kim, J.-Y., Son, H.J., Lee, C.-H., Jang, S.S., Ko, M.J.: Low-temperature solution-processed Li-doped SnO2 as an effective electron transporting layer for high-performance flexible and wearable perovskite solar cells. Nano Energy 26, 208–215 (2016)

    Article  CAS  Google Scholar 

  43. Xiong, L., Qin, M., Chen, C., Wen, J., Yang, G., Guo, Y., Ma, J., Zhang, Q., Qin, P., Li, S.: Fully high-temperature-processed SnO2 as blocking layer and scaffold for efficient, stable, and hysteresis-free mesoporous perovskite solar cells. Adv. Func. Mater. 28(10), 1706276 (2018)

    Article  Google Scholar 

  44. Halvani Anaraki, E., Kermanpur, A., Mayer, M.T., Steier, L., Ahmed, T., Turren-Cruz, S.-H., Seo, J., Luo, J., Zakeeruddin, S.M., Tress, W.R.: Low-temperature Nb-doped SnO2 electron-selective contact yields over 20% efficiency in planar perovskite solar cells. ACS Energy Letters 3(4), 773–778 (2018)

    Article  CAS  Google Scholar 

  45. Ren, X., Yang, D., Yang, Z., Feng, J., Zhu, X., Niu, J., Liu, Y., Zhao, W., Liu, S.F.: Solution-processed Nb: SnO2 electron transport layer for efficient planar perovskite solar cells. ACS Appl. Mater. Interfaces 9(3), 2421–2429 (2017)

    Article  CAS  Google Scholar 

  46. Gong, X., Sun, Q., Liu, S., Liao, P., Shen, Y., Grätzel, C., Zakeeruddin, S.M., Grätzel, M., Wang, M.: Highly efficient perovskite solar cells with gradient bilayer electron transport materials. Nano Lett. 18(6), 3969–3977 (2018)

    Article  CAS  Google Scholar 

  47. Khan, J., Yang, X., Qiao, K., Deng, H., Zhang, J., Liu, Z., Ahmad, W., Zhang, J., Li, D., Liu, H.: Low-temperature-processed SnO2–Cl for efficient PbS quantum-dot solar cells via defect passivation. J. Mater. Chem. A 5(33), 17240–17247 (2017)

    Article  CAS  Google Scholar 

  48. Wang, P., Wang, J., Zhang, X., Wang, H., Cui, X., Yuan, S., Lu, H., Tu, L., Zhan, Y., Zheng, L.: Boosting the performance of perovskite solar cells through a novel active passivation method. J. Mater. Chem. A 6(32), 15853–15858 (2018)

    Article  CAS  Google Scholar 

  49. Xiong, L., Qin, M., Yang, G., Guo, Y., Lei, H., Liu, Q., Ke, W., Tao, H., Qin, P., Li, S.: Performance enhancement of high temperature SnO2-based planar perovskite solar cells: electrical characterization and understanding of the mechanism. J. Mater. Chem. A 4(21), 8374–8383 (2016)

    Article  CAS  Google Scholar 

  50. Wang, D., Chen, S.-C., Zheng, Q.: Poly (vinylpyrrolidone)-doped SnO2 as an electron transport layer for perovskite solar cells with improved performance. J. Mater. Chem. C 7(39), 12204–12210 (2019)

    Article  CAS  Google Scholar 

  51. Ma, Z., Zhou, W., Xiao, Z., Zhang, H., Li, Z., Zhuang, J., Peng, C., Huang, Y.: Negligible hysteresis planar perovskite solar cells using Ga-doped SnO2 nanocrystal as electron transport layers. Org. Electron. 71, 98–105 (2019)

    Article  CAS  Google Scholar 

  52. Mohammed, M.K., Jabir, M.S., Abdulzahraa, H.G., Mohammed, S.H., Al-Azzawi, W.K., Ahmed, D.S., Singh, S., Kumar, A., Asaithambi, S., Shekargoftar, M.: Introduction of cadmium chloride additive to improve the performance and stability of perovskite solar cells. RSC Adv. 12(32), 20461–20470 (2022)

    Article  CAS  Google Scholar 

  53. Ahmed, D.S., Mohammed, M.K.: Studying the bactericidal ability and biocompatibility of gold and gold oxide nanoparticles decorating on multi-wall carbon nanotubes. Chem. Pap. 74(11), 4033–4046 (2020)

    Article  CAS  Google Scholar 

  54. Mohammad, M.R., Ahmed, D.S., Mohammed, M.K.: ZnO/Ag nanoparticle-decorated single-walled carbon nanotubes (SWCNTs) and their properties. Surf. Rev. Lett. 27(03), 1950123 (2020)

    Article  CAS  Google Scholar 

  55. Mohammed, M.K., Mohammad, M., Jabir, M.S., Ahmed, D.: Functionalization, characterization, and antibacterial activity of single wall and multi wall carbon nanotubes. IOP Conf. Ser. Mater. Sci. Eng. 757, 012028 (2020)

    Article  CAS  Google Scholar 

  56. Dehghanipour, M., Behjat, A., Bioki, H.A.: Fabrication of stable and efficient 2D/3D perovskite solar cells through post-treatment with TBABF 4. J. Mater. Chem. C 9(3), 957–966 (2021)

    Article  CAS  Google Scholar 

  57. Yoo, J.J., Seo, G., Chua, M.R., Park, T.G., Lu, Y., Rotermund, F., Kim, Y.-K., Moon, C.S., Jeon, N.J., Correa-Baena, J.-P.: Efficient perovskite solar cells via improved carrier management. Nature 590(7847), 587–593 (2021)

    Article  CAS  Google Scholar 

  58. Mohseni, H., Dehghanipour, M., Dehghan, N., Tamaddon, F., Ahmadi, M., Sabet, M., Behjat, A.: Enhancement of the photovoltaic performance and the stability of perovskite solar cells via the modification of electron transport layers with reduced graphene oxide/polyaniline composite. Sol. Energy 213, 59–66 (2021)

    Article  CAS  Google Scholar 

  59. Khaleel, O.A., Ahmed, D.S.: Interface engineering at electron transport/perovskite layers using wetting mesoporous titanium dioxide to fabricate efficient and stable perovskite solar cells. Int. J. Energy Res. 46, 11163–11173 (2022)

    Article  CAS  Google Scholar 

  60. Lyu, M., Lee, D.-K., Park, N.-G.: Effect of alkaline earth metal chloride additives BCl2 (B=Mg, Ca, Sr and Ba) on the photovoltaic performance of FAPbI3 based perovskite solar cells. Nanosc. Horiz. 5(9), 1332–1343 (2020)

    Article  CAS  Google Scholar 

  61. Mohammed, M.K., Shalan, A.E., Dehghanipour, M., Mohseni, H.: Improved mixed-dimensional 3D/2D perovskite layer with formamidinium bromide salt for highly efficient and stable perovskite solar cells. Chem. Eng. J. 428, 131185 (2022)

    Article  CAS  Google Scholar 

  62. Gong, W., Guo, H., Zhang, H., Yang, J., Chen, H., Wang, L., Hao, F., Niu, X.: Chlorine-doped SnO2 hydrophobic surfaces for large grain perovskite solar cells. J. Mater. Chem. C 8(33), 11638–11646 (2020)

    Article  CAS  Google Scholar 

  63. Dehghan, N., Behjat, A., Zare, H., Mohseni, H., Dehghanipour, M.: Modification of electron-transport layers with mixed RGO/C60 additive to boost the performance and stability of perovskite solar cells: a comparative study. Opt. Mater. 119, 111313 (2021)

    Article  CAS  Google Scholar 

  64. Gao, Y., Wu, Y., Liu, Y., Lu, M., Yang, L., Wang, Y., William, W.Y., Bai, X., Zhang, Y., Dai, Q.: Interface and grain boundary passivation for efficient and stable perovskite solar cells: the effect of terminal groups in hydrophobic fused benzothiadiazole-based organic semiconductors. Nanosc. Horiz. 5(12), 1574–1585 (2020)

    Article  CAS  Google Scholar 

  65. Ochoa-Martinez, E., Ochoa, M., Ortuso, R.D., Ferdowsi, P., Carron, R., Tiwari, A.N., Steiner, U., Saliba, M.: Physical passivation of grain boundaries and defects in perovskite solar cells by an isolating thin polymer. ACS Energy Lett. 6(7), 2626–2634 (2021)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors extend their appreciation to the Deanship of Scientific Research at King Khalid University for partially funding this work through the Research Group Program under grant number RGP. 2/195/43.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mustafa K. A. Mohammed or G. V. S. S. Sarma.

Ethics declarations

Conflict of interest

There is no conflict of interest by any author.

Consent to Participate

We comply with the ethical standards. We provide our consent to take part.

Consent for Publication

All the authors are giving consent to publish.

Ethical Approval

This article does not contain any studies with human participants or animals performed by the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, A., Al-Mousoi, A.K., Saadh, M.J. et al. Investigation of the Cobalt-Additive Role in Improving the Performance of Formamidium Lead Triiodide Based Solar Cells. Electron. Mater. Lett. 19, 471–482 (2023). https://doi.org/10.1007/s13391-023-00417-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13391-023-00417-4

Keywords

Navigation