Skip to main content
Log in

Evaluation of MgCo2O4 Nanoparticles as a Gas Sensor for the Detection of Acetone in the Diabetic and Non-Diabetic Range

  • Original Article - Nanomaterials
  • Published:
Electronic Materials Letters Aims and scope Submit manuscript

Abstract

The acetone contained in human breath is of great interest for the health sector as it is a marker that allows to diagnose and control diabetes in a non-invasive way. However, its concentration is extremely low. Therefore, high-performance acetone sensors are still a challenge. With this in mind, MgCo2O4 nanoparticles were synthesized using a microwave-assisted colloidal route with subsequent calcination. Structural and morphological characterizations were done through various techniques. The MgCo2O4 sensor was fabricated with the sample calcined at 500 °C. The sensing results showed that the sensor could detect acetone vapors ranging from 0.5 to 50 ppm at an optimum operating temperature of 250 °C with a high response, repeatability, stability, and selectivity. These sensing characteristics revealed that MgCo2O4 could be used as a new sensor material to detect acetone in exhaled human breath.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Yi, N., Shen, M., Erdely, D., Cheng, H.: Stretchable gas sensors for detecting biomarkers from humans and exposed environments. TrAC Trends Anal. Chem. 133, 116085 (2020)

    Article  CAS  Google Scholar 

  2. Xu, Y., Lee, H., Hu, Y., Huang, J., Kim, S., Yun, M.: Detection and identification of breast cancer volatile organic compounds biomarkers using highly-sensitive single nanowire array on a chip. J. Biomed. Nanotechnol. 9, 1164–1172 (2013)

    Article  CAS  Google Scholar 

  3. Righettoni, M., Tricoli, A., Pratsinis, S.E.: Si:WO3 sensors for highly selective detection of acetone for easy diagnosis of diabetes by breath analysis. Anal. Chem. 82, 3581–3587 (2010)

    Article  CAS  Google Scholar 

  4. Shin, J., Choi, J., Lee, S.-J., Youn, I., Park, D.-Y., Lee, C.O., Tuller, J.-H., Kim, H.L.: Thin-wall assembled SnO2 fibers functionalized by catalytic Pt nanoparticles and their superior exhaled-breath-sensing properties for the diagnosis of diabetes. Adv. Funct. Mater. 23, 2357–2367 (2013)

    Article  CAS  Google Scholar 

  5. Choi, S.-J., Jang, B.-H., Lee, S.-J., Min, B.K., Rothschild, A., Kim, I.-D.: Selective detection of acetone and hydrogen sulfide for the diagnosis of diabetes and halitosis using SnO2 nanofibers functionalized with reduced graphene oxide nanosheets. ACS Appl. Mater. Interfaces. 6, 2588–2597 (2014)

    Article  CAS  Google Scholar 

  6. Masikini, M., Chowdhury, M., Nemraoui, O.: Review-metal oxides: Application in exhaled breath acetone chemiresistive sensors. J. Electrochem. Soc. 167, 037537 (2020)

    Article  CAS  Google Scholar 

  7. Jang, J.-S., Kim, S.-J., Choi, S.-J., Kim, N.-H., Hakim, M., Rothschild, A., Kim, I.-D.: Thin-walled SnO2 nanotubes functionalized with Pt and Au catalysts via the protein templating route and their selective detection of acetone and hydrogen sulfide molecules. Nanoscale. 7, 16417–16426 (2015)

    Article  CAS  Google Scholar 

  8. Jang, J.-S., Choi, S.-J., Kim, S.-J., Hakim, M., Kim, I.-D.: Rational design of highly porous SnO2 nanotubes functionalized with biomimetic nanocatalysts for direct observation of simulated diabetes. Adv. Funct. Mater. 26, 4740–4748 (2016)

    Article  CAS  Google Scholar 

  9. Zhou, X., Feng, W., Wang, C., Hu, X., Li, X., Sun, P., Shimanoe, K., Yamazoe, N., Lu, G.: Porous ZnO/ZnCo2O4 hollow spheres: synthesis, characterization, and applications in as sensing. J. Mater. Chem. A. 2, 17683–17690 (2014)

    Article  CAS  Google Scholar 

  10. Zhou, T., Zhang, T., Zeng, Y., Zhang, R., Lou, Z., Deng, J., Wang, L.: Structure-driven efficient NiFe2O4 materials for ultra-fast response electronic sensing platform. Sens. Actuators B Chem. 255, 14361–14444 (2018)

    Article  Google Scholar 

  11. Zhang, H.-J., Liu, L.-Z., Zhang, X.-R., Zhang, S., Meng, F.-N.: Microwave-assisted solvothermal synthesis of shape-controlled CoFe2O4 nanoparticles for acetone sensor. J. Alloys Compd. 788, 1103–1112 (2019)

    Article  CAS  Google Scholar 

  12. Li, X., Wang, C., Guo, H., Sun, P., Liu, F., Liang, X., Lu, G.: Double-shell architectures of ZnFe2O4 nanosheets on ZnO hollow spheres for high-performance gas sensors. ACS Appl. Mater. Interfaces. 7, 17811–17818 (2015)

    Article  CAS  Google Scholar 

  13. Qu, F., Thomas, T., Zhang, B., Zhou, X., Zhang, S., Ruan, S., Yang, M.: Self-sacrificing templated formation of Co3O4/ZnCo2O4 composite hollow nanostructures for highly sensitive detecting acetone vapor. Sens. Actuators B Chem. 273, 1202–1210 (2018)

    Article  CAS  Google Scholar 

  14. Li, X., Lu, D., Shao, C., Lu, G., Li, X., Liu, Y.: Hollow CuFe2O4/α-Fe2O3 composite with ultrathin porous shell for acetone detection at ppb levels. Sens. Actuators B Chem. 258, 436–446 (2018)

    Article  CAS  Google Scholar 

  15. Krishnan, S.G., Reddy, M.V., Harilal, M., Vidyadharan, B., Misnon, I.I., Ab Rahim, M.H., Ismail, J., Jose, R.: Characterization of MgCo2O4 as an electrode for high performance supercapacitors. Electrochim. Acta. 161, 312–321 (2015)

    Article  CAS  Google Scholar 

  16. Gao, H., Wang, X., Wang, G., Hao, C., Zhou, S., Huang, C.: An urchin-like MgCo2O4@PPy core-shell composite grown on Ni foam for a high-performance all-solid-state asymmetric supercapacitor. Nanoscale. 10, 10190–10202 (2018)

    Article  CAS  Google Scholar 

  17. Cui, L., Huang, L., Ji, M., Wang, Y., Shi, H., Zuo, Y., Kang, S.: High-performance MgCo2O4 nanocone arrays grown on three-dimensional nickel foams: Preparation and application as binder-free electrode for pseudo-supercapacitor. J. Power Sources. 333, 118–124 (2016)

    Article  CAS  Google Scholar 

  18. Sharma, Y., Sharma, N., Subba Rao, G.V., Chowdari, B.V.R.: Studies on spinel cobaltites, FeCo2O4 and MgCo2O4 as anodes for Li-ion batteries. Solid State Ion. 179, 587–597 (2008)

    Article  CAS  Google Scholar 

  19. Wang, F., Liu, Y., Zhao, Y., Wang, Y., Wang, Z., Zhang, W., Ren, F.: Facile synthesis of two-dimensional porous MgCo2O4 nanosheets as anode for lithium-ion batteries. Appl. Sci. 8, 22 (2018)

    Article  Google Scholar 

  20. Reddy, M.V., Xu, Y., Rajarajan, V., Ouyang, T., Chowdari, B.V.R.: Template free facile molten synthesis and energy storage studies on MCo2O4 (M = Mg, Mn) as anode for Li-ion batteries. ACS Sustainable Chem. Eng. 3, 3035–3042 (2015)

    Article  CAS  Google Scholar 

  21. Rathinavel, S., Vadivel, S., Balaji, G.: Development of ethanol and acetone gas sensing performance of MgCo2O4 nanosensors by clad modified fiber optical method. Opt. Fiber Technol. 48, 218–224 (2019)

    Article  CAS  Google Scholar 

  22. Guillén-López, E.S., López-Urías, F., Muñoz-Sandoval, E., Courel-Piedrahita, M., Sanchez-Tizapa, M., Guillén-Bonilla, H., Rodríguez-Betancourtt, V.M., Blanco-Alonso, O., Guillén-Bonilla, A., Morán-Lázaro, J.P.: High performance isopropanol sensor based on spinel ZnMn2O4 nanoparticles. Mater. Today Commun. 26, 102138 (2021)

    Article  Google Scholar 

  23. Kamioka, N., Ichitsubo, T., Uda, T., Imashuku, S., Taninouchi, Y.-K., Matsubara, E.: Synthesis of spinel-type magnesium cobalt oxide and its electrical conductivity. Mater. Trans. 9, 824–828 (2008)

    Article  Google Scholar 

  24. Darbar, D., Reddy, M.V., Sundarrajan, S., Pattabiraman, R., Ramakrishna, S., Chowdari, B.V.R.: Anodic electrochemical performances of MgCo2O4 synthesized by oxalate decomposition method and electrospinning technique for Li-ion battery application. Mater. Res. Bull. 73, 369–376 (2016)

    Article  CAS  Google Scholar 

  25. Morán-Lázaro, J.P., Blanco, O., Rodríguez-Betancourtt, V.M., Reyes-Gómeze, J., Michel, C.R.: Enhanced CO2-sensing response of nanostructured cobalt aluminate synthesized using a microwave-assisted colloidal method. Sens. Actuators B Chem. 226, 518–524 (2016)

    Article  Google Scholar 

  26. Morán-Lázaro, J.P., López-Urías, F., Muñoz-Sandoval, E., Blanco-Alonso, O., Sanchez-Tizapa, M., Carreon-Alvarez, A., Guillén-Bonilla, H., Olvera-Amador, M., de la Guillén-Bonilla, L., Rodríguez-Betancourtt, A.: Synthesis, characterization, and sensor applications of spinel ZnCo2O4 nanoparticles. Sensors. 16, 2162 (2016)

    Article  Google Scholar 

  27. Julien, C.M., Gendron, F., Amdouni, A., Massot, M.: Lattice vibrations of materials for lithium rechargeable batteries. VI: Ordered spinels. Mater. Sci. Eng. B. 130, 41–48 (2006)

    Article  CAS  Google Scholar 

  28. Wang, Y., Li, S., Sun, J., Zhang, Y., Chen, H., Xu, C.: Simple solvothermal synthesis of magnesium cobaltite microflowers as a battery grade material with high electrochemical performance. Ceram. Int. 45, 14642–14651 (2019)

    Article  CAS  Google Scholar 

  29. Stringhini, F.M., Foletto, E.L., Sallet, D., Bertuol, D.A., Chiavone-Filho, O., Nascimento, C.A.O.: do.: Synthesis of porous zinc aluminate spinel (ZnAl2O4) by metal-chitosan complexation method. J. Alloys. Compd. 588, 305–309 (2014)

  30. Leal, E., de Melo Costa, A.C.F., de Freita, N.L., de Lucena Lira, H., Kiminami, R.H.G.A., Gama, L.: NiAl2O4 catalysts prepared by combustion reaction using glycine as fuel. Mater. Res. Bull. 46, 1409–1413 (2011)

    Article  CAS  Google Scholar 

  31. Godbole, R., Rao, P., Bhagwat, S.: Magnesium ferrite nanoparticles: a rapid gas sensor for alcohol. Mater. Res. Express. 4, 025032 (2017)

    Article  Google Scholar 

  32. Dey, A.: Semiconductor metal oxide gas sensors: A review. Mater. Sci. Eng. B. 229, 206–217 (2018)

    Article  CAS  Google Scholar 

  33. LaMer, V.K., Dinegar, R.H.: Theory, production and mechanism of formation of monodispersed hydrosols. J. Am. Chem. Soc. 72, 4847–4854 (1950)

    Article  CAS  Google Scholar 

  34. Guo, J., Wang, S., Lin, Z., Liu, L., Hui, Y.: Ultrasensitive acetone sensor based on holey zinc oxide nanosheets doped by gold nanoparticles. Mater. Lett. 302, 130443 (2021)

    Article  CAS  Google Scholar 

  35. Ma, N., Suematsu, K., Yuasa, M., Kida, T., Shimanoe, K.: Effect of water vapor on Pd-loaded SnO2 nanoparticles gas sensor. ACS Appl. Mater. Interfaces. 7, 5863–5869 (2015)

    Article  CAS  Google Scholar 

  36. Quan, W., Hu, X., Min, X., Qiu, J., Tian, R., Ji, P., Qin, W., Wang, H., Pan, T., Cheng, S., Chen, X., Zhang, W., Wang, X., Zheng, H.: A highly sensitive and selective ppb-level acetone sensor based on a Pt-doped 3D porous SnO2 hierarchical structure. Sensors. 20, 1150 (2020)

    Article  CAS  Google Scholar 

  37. Nemufulwi, M.I., Swart, H.C., Mhlongo, G.H.: Evaluation of the effects of Au addition into ZnFe2O4 nanostructures on acetone detection capabilities. Mater. Res. Bull. 142, 111395 (2021)

    Article  CAS  Google Scholar 

  38. Yamazoe, N.: New approaches for improving semiconductor gas sensor. Sens. Actuators B. 5, 7–9 (1991)

    Article  CAS  Google Scholar 

  39. Wang, C., Yin, L., Zhang, L., Xiang, D., Gao, R.: Metal oxide gas sensors: Sensitivity and influencing factors. Sensors. 10, 2088–2106 (2010)

    Article  CAS  Google Scholar 

  40. Barsan, N., Simion, C., Heine, T., Pokhrel, S., Weimar, U.: Modeling of sensing and transduction for p-type semiconducting metal oxide based gas sensors. J. Electroceram. 25, 11–19 (2010)

    Article  CAS  Google Scholar 

  41. Korotcenkov, G.: The role of morphology and crystallographic structure of metal oxides in response of conductometric-type gas sensors. Mater. Sci. Eng. R. 61, 1–39 (2008)

    Article  Google Scholar 

  42. Amiri, V., Roshan, H., Mirzaei, A., Neri, G., Ayesh, A.I.: Nanostructured metal oxide-based acetone gas sensors: A review. Sensors. 20, 3096 (2020)

    Article  CAS  Google Scholar 

  43. Liu, L., Shu, S., Zhang, G., Liu, S.: Highly selective sensing of C2H6O, HCHO, and C3H6O gases by controlling SnO2 nanoparticle vacancies. ACS Appl. Nano Mater. 1, 31–37 (2018)

    Article  CAS  Google Scholar 

  44. Wang, L., Teleki, A., Pratsinis, S.E., Gouma, P.I.: Ferroelectric WO3 nanoparticles for acetone selective detection. Chem. Mater. 20, 4794–4796 (2008)

    Article  CAS  Google Scholar 

  45. Jia, Q., Ji, H., Zhang, Y., Chen, Y., Sun, X., Jin, Z.: Rapid and selective detection of acetone using hierarchical ZnO gas sensor for hazardous odor markers application. J. Hazard. Mater. 276, 262–270 (2014)

    Article  CAS  Google Scholar 

  46. Li, J., Tang, P., Zhang, J., Feng, Y., Luo, R., Chen, A., Li, D.: Facile synthesis and acetone sensing performance of hierarchical SnO2 hollow microspheres with controllable size and shell thickness. Ind. Eng. Chem. Res. 55, 3588–3595 (2016)

    Article  CAS  Google Scholar 

  47. Zhang, S., Song, P., Zhang, J., Yan, H., Li, J., Yang, Z., Wang, Q.: Highly sensitive detection of acetone using mesoporous In2O3 nanospheres decorated with Au nanoparticles. Sens. Actuators B Chem. 242, 983–993 (2017)

    Article  CAS  Google Scholar 

  48. Tumanov, V.E., Kromkin, E.A., Denisov, E.T.: Estimation of dissociation energies of C–H bonds in oxygen-containing compounds from kinetic data for radical abstraction reactions. Russ Chem. Bull. Int. Ed. 51, 1641–1650 (2002)

    Article  CAS  Google Scholar 

  49. Yao, Y.-R.: Handbook of bond dissociation energies in organic compounds. CRC Press, Florida (2003)

    Google Scholar 

Download references

Acknowledgements

The authors thank LINAN-IPICYT for XRD and TEM analysis, and Environment and Renewable Energy Laboratory-CUValles for Raman and sensing measurements. Thanks are owed to Armando Rentería for his technical assistance in SEM analysis. E.S. Guillén-López thanks the National Council of Science and Technology of Mexico (CONACYT) for his doctorate scholarship. A. Carreon-Alvarez acknowledges the CONACYT through project 279937 of the Scientific and Technological Infrastructure and project CGIPV/421/2022 of the Program for Strengthening Research and Postgraduate of the Universidad de Guadalajara. J.P. Morán-Lázaro thanks support from PROSNI of the Universidad de Guadalajara.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. P. Morán-Lázaro.

Ethics declarations

Conflict of Interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Morán-Lázaro, J.P., López-Urías, F., Muñoz-Sandoval, E. et al. Evaluation of MgCo2O4 Nanoparticles as a Gas Sensor for the Detection of Acetone in the Diabetic and Non-Diabetic Range. Electron. Mater. Lett. 19, 66–75 (2023). https://doi.org/10.1007/s13391-022-00371-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13391-022-00371-7

Keywords

Navigation