Skip to main content
Log in

Engineering Magnetic Type Radio-Absorbers Based on Composites with a Dual-Phase Polymer Matrix

  • Review Paper
  • Published:
Electronic Materials Letters Aims and scope Submit manuscript

A Correction to this article was published on 11 August 2022

This article has been updated

Abstract

This work is focused on the optimization of electromagnetic and mechanical properties of magnetic polymer composites for EMI applications as radio absorbers (RAs). Polymer composites with a dual-phase polymer matrix, vinyl-terminated polydimethylsiloxane (PDMS) in epoxy (ER), were investigated for fabricating highlyfilled manganese zinc ferrite (MnZn) and carbonyl iron (CI) composites with respect to radio-absorption and mechanical properties. The dielectric and magnetic properties of the composites were determined by the type, concentration as well as the polymer matrix composition. Increase of the filler and the PDMS concentration leads to an increase in magnetic losses due to a decrease in the demagnetizing field. The electromagnetic properties of the composites were evaluated in the RF band using the impedance method (1 MHz–3 GHz). Based on the complex permittivity (ε*) and the complex permeability (μ*), the reflection loss RL (dB) of single-layer metal-backed RAs were calculated. The RAs with a MnZn ferrite demonstrated a larger bandwidth to thickness ratio in comparison with the CI-based RAs due to a proper ratio between ε* and μ* which leads to the better impedance matching conditions. According to the mechanical analyses (DMA, Charpy impact strength) the significant increase of stiffness up to 125% and the impact strength up to 150% was achieved due to the optimal composition of the polymer matrix and the filler.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Change history

References

  1. Meena, R.S., Bhattachrya, S., Chatterjee, R.: Complex permittivity, permeability and microwave absorbing properties of (Mn2xZnx)U-type hexaferrite. J. Magn. Magn. Mater. 322, 2908–2914 (2010). https://doi.org/10.1016/j.jmmm.2010.05.004

    Article  CAS  Google Scholar 

  2. Xie, S., Zhu, L., Zhang, Y., Ji, Z., Wang, J.: Three dimensional periodic structured absorber for broadband electromagnetic radiation absorption. Electron. Mater. Lett. 16, 340–346 (2020). https://doi.org/10.1007/s13391-020-00219-y

    Article  CAS  Google Scholar 

  3. Zhou, Y., Li, W., Li, L., Sun, Z., Jiang, L., Ma, J., Chen, S., Ning, X., Zhou, F.L.: Lightweight and highly conductive silver nanoparticles functionalized meta-aramid nonwoven fabric for enhanced electromagnetic interference shielding. J. Mater. Sci. 56, 6499–6513 (2021). https://doi.org/10.1007/s10853-020-05600-8

    Article  CAS  Google Scholar 

  4. Stergioul, C.A., Koledintseva, M.Y., Rozanov, K.N.: Hybrid polymer composites for electromagnetic absorption in electronic industry. Hybrid Polym. Compos. Mater.: Appl. (2017). https://doi.org/10.1016/B978-0-08-100785-3.00003-6

    Article  Google Scholar 

  5. Naseer, A., Mumtaz, M., Raffi, M., Ahmad, I., Khan, S.D., Shakoor, R.I., Shahzada, S.: Reinforcement of electromagnetic wave absorption characteristics in PVDF-PMMA nanocomposite by intercalation of carbon nanofibers. Electron. Matter. Lett. 15, 201–207 (2019). https://doi.org/10.1007/s13391-018-00104-9

    Article  CAS  Google Scholar 

  6. Rozanov, K.: Ultimate thickness to bandwidth ratio of radar absorbers. IEEE T. Antenn. Propag. 48(8), 1230–1234 (2000). https://doi.org/10.1109/8.884491

    Article  Google Scholar 

  7. Microwave absorbing materials. Laird technologies. http://www.lairdtech.com

  8. Ferrite absorbers. TDK RF Solutions Inc. http://www.tdkrfsolutions.com

  9. Vovchenko, L.L., Lozitsky, O.V., Matzui, L.Y., et al.: Microwave shielding and absorbing properties of single- and multilayered structures based on two-phase filler/epoxy composites. Appl. Nanosci. (2021). https://doi.org/10.1007/s13204-021-01765-z

    Article  Google Scholar 

  10. Perigo, E.A., et al.: Past, present, and future of soft magnetic composites. J. Appl. Phys. Rev. 5, 031301 (2018). https://doi.org/10.1063/1.5027045

    Article  CAS  Google Scholar 

  11. Sista, K.S., Dwarapudi, S., Kumar, D., Sinha, G.R., Moon, A.P.: Carbonyl iron powders as absorption material for microwave interference shielding: a review. J. Alloy. Compd. (2021). https://doi.org/10.1016/j.jallcom.2020.157251

    Article  Google Scholar 

  12. Singh Yadav, R., Kuřitka, I., Vilčáková, J.: Advanced Spinel Ferrite Nanocomposites for Electromagnetic Interference Shielding Applications. Elsevier Inc., Netherlands (2020)

    Google Scholar 

  13. Batel, L., Mattei, J.L., Chevalier, A.: Tunable magneto-dielectric material for electrically small and reconfigurable antenna systems at vhf band. Ceramics 3(3), 276–286 (2020). https://doi.org/10.3390/ceramics3030025

    Article  Google Scholar 

  14. Chevalier, A., Le Floc’h, M.: Dynamic permeability in soft magnetic composite materials. J. Appl. Phys. 90, 3462–3465 (2001). https://doi.org/10.1063/1.1389520

    Article  CAS  Google Scholar 

  15. Lopatin, A.V., Kazantseva, N.E., Kazantsev, Y.N., et al.: The efficiency of application of magnetic polymer composites as radio-absorbing materials. J. Commun. Technol. Electron. 53, 487–496 (2008). https://doi.org/10.1134/S106422690805001X

    Article  Google Scholar 

  16. Babayan, V., Kazantseva, N.E., Moučka, R., Sapurina, I., Spivak, Y.M., Moshnikov, V.A.: Combined effect of demagnetizing field and induced magnetic anisotropy on the magnetic properties of MnZn ferrite composites. J. Magn. Magn. Mater. 324, 161–172 (2012). https://doi.org/10.1016/j.jmmm.2011.08.002

    Article  CAS  Google Scholar 

  17. Vilčáková, J., Kutějová, L., Jurča, M., Moučka, R., Vícha, R., Sedlačík, M., Kovalcik, A., Machovský, M., Kazantseva, N.E.: Enhanced Charpy impact strength of epoxy resin modified with vinyl-terminated polydimethylsiloxane. J. Appl. Polym. Sci. 135, 45720 (2018). https://doi.org/10.1002/app.45720

    Article  CAS  Google Scholar 

  18. Jurča, M., Vilčáková, J., et al.: Reduced percolation threshold of conductive adhesive through nonuniform filler localization: monte Carlo simulation and experimental study. Compos. Sci. Technol. 214, 108964 (2021). https://doi.org/10.1016/j.compscitech.2021.108964

    Article  CAS  Google Scholar 

  19. Abshinova, M.A., Lopatin, A.V., Kazantseva, N.E., Vilčáková, J., Sáha, P.: Correlation between the microstructure and the electromagnetic properties of carbonyl iron filled polymer composite. Compos. Part A-Appl. S. 38, 2471–2485 (2007). https://doi.org/10.1016/j.compositesa.2007.08.002

    Article  CAS  Google Scholar 

  20. Moučka, R., Lopatin, A.V., Kazantseva, N.E., et al.: Enhancement of magnetic losses in hybrid polymer composites with MnZn-ferrite and conductive fillers. J Mater Sci 42, 9480–9490 (2007). https://doi.org/10.1007/s10853-007-2081-0

    Article  CAS  Google Scholar 

  21. Pauw, L.: A method of measuring specific resistivity and Hall effect of discs of arbitrary shape. Philips Res. Rep. 13(1), 1–9 (1958). https://doi.org/10.1142/9789814503464_0017

    Article  Google Scholar 

  22. Ge, Y., Li, C., Waterhouse, G.I.N., et al.: ZnFe2O4@PDA@Polypyrrole composites with efficient electromagnetic wave absorption properties in the 18–40 GHz region. J. Mater. Sci. 56, 10876–10891 (2021). https://doi.org/10.1007/s10853-021-05968-1

    Article  CAS  Google Scholar 

  23. Sankaran, S., Deshmukh, K., Ahamed, M.B., Pasha, S.K.K.: Recent advances in electromagnetic interference shielding properties of metal and carbon filler reinforced flexible polymer composites: a review. Compos. Part A-Appl. S. 114, 49–71 (2018). https://doi.org/10.1016/j.compositesa.2018.08.006

    Article  CAS  Google Scholar 

  24. Mattei, J.L., Le Floc’h, M.: A numerical approach of the inner demagnetizing effects in soft magnetic composites. J. Magn. Magn. Mater. 215–216, 589–591 (2000). https://doi.org/10.1016/S0304-8853(00)00230-4

    Article  Google Scholar 

  25. Kong, L.B., Li, Z.W., Liu, L., Huang, R., Abshinova, M., Yang, Z.H., et al.: Recent progress in some composite materials and structures for specific electromagnetic applications. Int. Mater. Rev. 58, 203–259 (2013). https://doi.org/10.1179/1743280412Y.0000000011

    Article  CAS  Google Scholar 

  26. Lagarkov, A.N., Rozanov, K.N.: High-frequency behaviour of magnetic composites. J. Magn. Magn. Mater. 321, 2082–2092 (2009). https://doi.org/10.1016/j.jmmm.2008.08.099

    Article  CAS  Google Scholar 

  27. Tsutaoka, T.: Frequency dispersion of complex permeability in Mn–Zn and Ni–Zn spinel ferrites and their composite materials. J. Appl. Phys. 93, 2789–2796 (2003). https://doi.org/10.1063/1.1542651

    Article  CAS  Google Scholar 

  28. Moore, R.L.: Development and test of concentration scalled demagnetization in effective media theories of magnetic composites. J. Appl. Phys. 125, 085101 (2019). https://doi.org/10.1063/1.5053791

    Article  CAS  Google Scholar 

  29. Mattei, J.L., Le Floc’h, M.: Effects of the magnetic dilution of the ferromagnetic resonance of disordered heterostructures. J. Magn. Magn. Mater. 264, 86–94 (2003). https://doi.org/10.1016/S0304-8853(03)00143-4

    Article  CAS  Google Scholar 

  30. Mattei, J.L., Le Floc’h, M.: Percolative behavior and demagnetizing effects in disordered heterostructures. J. Magn. Magn. Mater. 257, 335–345 (2003). https://doi.org/10.1016/S0304-8853(02)01232-5

    Article  CAS  Google Scholar 

  31. Huang, Y., Song, W.-L., Wang, Ch., Xu, Y., Wei, W., Chen, M., Tang, L., Fang, D.: Multi-scale design of electromagnetic composite metamaterials for broadband microwave absorption. Compos. Sci. Technol 162, 206–214 (2018). https://doi.org/10.1016/j.compscitech.2018.04.028

    Article  CAS  Google Scholar 

  32. Abdul Aziz, S.A.B., Mazlan, S.A., Nordin, N.A., Abd Rahman, N.A.N., Ubaidillah, U., Choi, S.B., Mohamad, N.: Material characterization of magnetorheological elastomers with corroded carbonyl iron particles: morphological images and field-dependent viscoelastic properties. Int. J. Mol. Sci. 20(13), 3311 (2019). https://doi.org/10.3390/ijms20133311

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Ministry of Education, Youth and Sports of the Czech Republic – DKRVO (RP/CPC/2022/005) and Program INTER-EXCELLENCE (LTAUSA19066).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jarmila Vilčáková.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original online version of this article was revised due to the Graphical Abstract was published incorrectly and it has been corrected.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gořalík, M., Jurča, M., Bubulinca, C. et al. Engineering Magnetic Type Radio-Absorbers Based on Composites with a Dual-Phase Polymer Matrix. Electron. Mater. Lett. 18, 345–360 (2022). https://doi.org/10.1007/s13391-022-00351-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13391-022-00351-x

Keywords

Navigation