Skip to main content
Log in

Review on Ti3C2-Based MXene Nanosheets for Flexible Electrodes

  • Review Paper
  • Published:
Electronic Materials Letters Aims and scope Submit manuscript

Abstract

MXenes have recently gained significant attention owing to their exceptional metallic electrical conductivity, good chemical inertness, and excellent hydrophilicity. Among the various two-dimensional MXenes, which are made up of atomic layers of transition metal carbides and nitrides, Ti3C2Tx is one of the most promising and versatile materials for application in various electronic devices. In fact, there has been a rising trend of using Ti3C2-based MXene nanosheets as flexible electrodes for different electronic devices. Ti3C2-based MXenes have shown the potential to be utilized as flexible and conductive electrodes in electrical energy storage devices, light-emitting devices, photodetectors, and flexible strain sensors. Thus, this review focuses on Ti3C2-based MXene nanosheets and MXene/polymer composite films, which are widely used as flexible and electrode layers in electronic devices, such as supercapacitors, solar cells, light-emitting devices, energy harvesting devices, power generating devices, and flexible strain sensors. First, we have briefly discussed the structure, conductivity, work function, and synthesis processes of Ti3C2 nanosheets based on the most recently published research articles. Then, we discussed the recent advances in the modification methods for Ti3C2-based MXenes to render them suitable for application as conductive electrode layers in various flexible electronic devices. The last section highlights the current challenges in the development and application of Ti3C2-based MXenes and future perspectives.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Source: Lens Scholarly Search, LENS.ORG

Fig. 2
Fig. 3

Copyright 2016 Wiley. Fabrication of the MXene/nanofiber composite nanosheet. c. MXene prepared from Ti3AlC2 precursors using the HF etching method. d. The ANFs were prepared from commercial Kevlar yarns using the KOH/DMSO exfoliation process. e. The photograph of the flexible, free-standing, paper-like MXene/ANF composite nanosheets prepared using the VAF technique. Reprinted with permission from [52]. Copyright 2019 Nature Publications

Fig. 4
Fig. 5
Fig. 6

Copyright 2019, American Chemical Society. c. Fabrication process of the Ti3C2Tx/rGO hybrid film. d. Photographs of the stable Ti3C2Tx–water, GO–water, and Ti3C2Tx/GO–water dispersions and flexible Ti3C2Tx/GO film (diameter, 5 cm) with its thickness measurements. e. Schematic of the flexible integrated ECSD. f. The digital image of the flexible ECSD. Visual images of an LED light control using the ECSD with three tandem supercapacitors under light irradiation (g) and in the dark (h). Reproduced with permission from [75]. Copyright 2017 RSC

Fig. 7

Copyright 2020, WILEY–VCH Verlag GmbH & Co. e. Photograph of the PL-MXene electrode on the flexible PET substrate. f. Device architecture of the AC-EL display, characteristics of PL-MXene as the electrode layer, and SEM cross-sectional image of the ZnS:Cu/PDMS composite layer. g. Luminance of the flexible inorganic AC-EL displays with pure MXene and PL-MXene electrodes as a function of the number of bending cycles. The inset shows the photograph of the PL-MXene AC-EL display. Reproduced with permission from [78]. Copyright 2021, ACS Publications

Fig. 8

Copyright 2018 ACS Publications. d. Schematic for the preparation of a flexible MXene-coated textile fabric electrode. e. Ti3C2Tx nanosheets and adhesion tests A “Li–S” shaped string containing 30 LEDs lit by a soft-packaged Li–S battery with the MF@Ti3C2Tx/S50 electrode at the bending angles of 0° (f) and 360° (g). h. Cycling performance of the MF@Ti3C2Tx/S50 electrode. Reproduced with permission from [80], Copyright 2021 RSC Publications

Fig. 9

Copyright 2021Elsevier Ltd.. Schematic of the TENG sensor with nylon and PVDF/MXene as the positive and negative layers, respectively. f. Schematic of the TENG with rectifier circuit, the photograph of an LED series with more than 120 LEDs, which turned ON when the TENG sensor detected an easy hand tapping movement. Reprinted with permission from [84]. Copyright 2021 Elsevier Ltd

Fig. 10

Copyright 2021 Elsevier Ltd. Skin-like PVA/MXene hybrid thin film. e. Schematic for the formation of the skin-like PVA/MXene hybrid thin film with the cross-linked structure. f. Photograph of the PVA/MXene hybrid nanofilm. In-vivo mice study: Schematic (g) and photograph (h) of the pressure sensor attached to the heart of the mice. Reproduced with permission from [86]. Copyright 2021 Elsevier Ltd

Similar content being viewed by others

References

  1. Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Zhang, Y., Dubonos, S.V., Grigorieva, I.V., Firsov, A.A.: Electric field effect in atomically thin carbon films. Science 306(5696), 666–669 (2004)

    Article  CAS  Google Scholar 

  2. Mounet, N., Gibertini, M., Schwaller, P., Campi, D., Merkys, A., Marrazzo, A., Sohier, T., Castelli, I.E., Cepellotti, A., Pizzi, G., Marzari, N.: Two-dimensional materials from high-throughput computational exfoliation of experimentally known compounds. Nature Nanotech. 13, 246–252 (2018)

    Article  CAS  Google Scholar 

  3. Zhao, S., Kang, W., Xue, J.: MXene nanoribbons. J. Mater. Chem. C 3(4), 879–888 (2015)

    Article  CAS  Google Scholar 

  4. Li, X., Ran, F., Yang, F., Long, J., Shao, L.: Advances in MXene films:synthesis, assembly, and applications. Trans. Tianjin Univ. 27, 217–247 (2021)

    Article  CAS  Google Scholar 

  5. Chhowalla, M., Jena, D., Zhang, H.: Two-dimensional semiconductors for transistors. Nat. Rev. Mater. 1, 16052 (2016)

    Article  CAS  Google Scholar 

  6. Radisavljevic, B., Radenovic, A., Brivio, J., Giacometti, V., Kis, A.: Single-layer MoS2 transistors. Nat. Nanotech. 6, 147–150 (2011)

    Article  CAS  Google Scholar 

  7. Butler, S.Z., Hollen, S.M., Cao, L., Cui, Y., Gupta, J.A., Gutiérrez, H.R., Heinz, T.F., Hong, S.S., Huang, J., Ismach, A.F., Johnston-Halperin, E., Kuno, M., Plashnitsa, V.V., Robinson, R.D., Ruoff, R.S., Salahuddin, S., Shan, J., Shi, L., Spencer, M.G., Terrones, M., Windl, W., Goldberger, J.E.: Progress, challenges, and opportunities in two-dimensional materials beyond graphene. ACS Nano 7, 2898–2926 (2013)

    Article  CAS  Google Scholar 

  8. Anasori, B., Lukatskaya, M.R., Gogotsi, Y.: 2D Metal carbides and nitrides (MXenes) for energy storage. Nat. Mater. 2, 16098 (2017)

    Article  CAS  Google Scholar 

  9. Dávila, M., Xian, L., Cahangirov, S., Rubio, A., Le Lay, G.: Germanene: a novel two-dimensional germanium allotrope akin to graphene and silicene. New J. Phys. 16, 095002 (2014)

  10. Peng, L., Ye, S., Song, J., Qu, J.: Solution-phase synthesis of few-layer hexagonal antimonene nanosheets via anisotropic growth. Angew. Chem. Int. Ed. Engl. 58(29), 9891–9896 (2019)

    Article  CAS  Google Scholar 

  11. Cho, K., Yang, J., Lu, Y.: Phosphorene: An emerging 2D material. J. Mater. Res. 32, 2839–2847 (2017)

    Article  CAS  Google Scholar 

  12. García-Miranda Ferrari, A., Rowley-Neale, S.J., Banks, C.E.: Recent advances in 2D hexagonal boron nitride (2D-hBN) applied as the basis of electrochemical sensing platforms. Anal. Bioanal. Chem. 413, 663–672 (2021)

    Article  CAS  Google Scholar 

  13. Roy, S., Zhang, X., Puthirath, A. B., Meiyazhagan, A., Bhattacharyya, S., Rahman, M. M., Babu, G., Susarla, S., Saju, S. K., Tran, M. K., Sassi, L. M., Saadi, M. A. S. R., Lai, J., Sahin, O., Sajadi, S. M., Dharmarajan, B., Salpekar, D., Chakingal, N., Baburaj, A., Shuai, X., Adumbumkulath, A., Miller, K. A., Gayle, J. M., Ajnsztajn, A., Prasankumar, T., Harikrishnan, V. V. J., Ojha, V., Kannan, H., Khater, A. Z., Zhu, Z., Iyengar, S. A., Autreto, P. A. D. S., Oliveira, E. F., Gao, G., Birdwell, A. G., Neupane, M. R., Ivanov, T. G., Taha-Tijerina, J., Yadav, R. M., Arepalli, S., Vajtai, R., Ajayan, P. M.: Structure, Properties and Applications of Two-Dimensional Hexagonal Boron Nitride. Adv. Mater. 33(44), e2101589 (2021).

  14. Yin, X., Tang, C. S., Zheng, Y., Gao, J., Wu, J., Zhang, H., Chhowalla, M., Chen, W., Wee, Andrew T. S.:Recent developments in 2D transition metal dichalcogenides: phase transition and applications of the (quasi-)metallic phases.Chem. Soc. Rev.50, 10087–10115 (2021)

  15. Kim, D. M., Kim, S.-il., Kim, TW.: Accurate analysis of schottky barrier height in Au/2H–MoTe2 atomically thin film contact. Electron. Mater. Lett. 17, 307–314 (2021)

    Google Scholar 

  16. Osada, M., Sasaki, T.: Two-dimensional dielectric nanosheets: novel nanoelectronics from nanocrystal building blocks. Adv Mater. 10, 24(2), 210–28 (2012)

  17. Naguib, M., Kurtoglu, M., Presser, V., Lu, J., Niu, J., Heon, M., Hultman, L., Gogotsi, Y., Barsoum, M.W.: Two-Dimensional Nanocrystals Produced by Exfoliation of Ti3AlC2. Adv. Mater. 23, 4248–4253 (2011)

    Article  CAS  Google Scholar 

  18. Tang, R., Xiong, S., Gong, D., Deng, Y., Wang, Y., Su, L., Ding, C., Lihua Yang, L., Chanjuan Liao, C.: Ti3C22D MXene: recent progress and perspectives in photocatalysis. ACS Appl. Mater. Interfaces 12, 56663–56680 (2020)

    Article  CAS  Google Scholar 

  19. Liu, A., Liang, X., Ren, X., Guan, W., Gao, M., Yang, Y., Yang, Q., Gao, L., Li, Y., Ma, T.: Recent progress in mxene-based materials: potential high-performance electrocatalysts adv. Funct. Mater. 30, 2003437 (2020)

    Article  CAS  Google Scholar 

  20. Aghaei, S.M., Aasi, A., Panchapakesan, B.: Experimental and theoretical advances in mxene-based gas sensors. ACS Omega 6, 2450–2461 (2021)

    Article  CAS  Google Scholar 

  21. Liu, A., Yang, Q., Ren, X., Meng, F., Gao, L., Gao, M., Yang, Y., Ma, T., G. Wu, G.:Energy- and cost-efficient NaCl-assisted synthesis of MAX-phase Ti3AlC2 at lower temperature. Ceram. Int. 46, 6934 (2020)

  22. Ghidiu, M., M Lukatskaya, R., Zhao, M-Q., Gogotsi, Y., M Barsoum, W.: Conductive two-dimensional titanium carbide 'clay' with high volumetric capacitance. Nature. 4, 516(7529), 78–81 (2014)

  23. Peng, Q., Guo, J., Zhang, Q., Xiang, J., Liu, B., Zhou, A., Liu, R., Tian, Y.: Unique lead adsorption behavior of activated hydroxyl group in two-dimensional titanium carbide. J. Am. Chem. Soc. 136, 4113–4116 (2014)

    Article  CAS  Google Scholar 

  24. Pei, Y., Zhang, X., Hui, Z., Zhou, J., Huang, X., Sun, G., Huang, W.: Ti3C2TxMXene for sensing applications: recent progress, design principles, and future perspectives. ACS Nano 15, 3996–4017 (2021)

    Article  CAS  Google Scholar 

  25. Iqbal, A., Kwon, J., Kim, M.-K., Koo, C. M.: MXenes for electromagnetic interference shielding: Experimental and theoretical perspectives. Mater.Today Adv. 9, 100124 (2021)

  26. Mathis, TS., Maleski, K., Goad, A., Sarycheva, A., Anayee, M., Foucher, AC., Hantanasirisakul, K., Shuck, CE., Stach, EA., Gogotsi, Y.: Modified MAX Phase Synthesis for Environmentally Stable and Highly Conductive Ti3C2 MXene.ACS Nano 15, 6420−6429 (2021)

  27. Wei, Y., Zhang, P., Soomro, Razium A., Zhu, Q., Xu, B.:Advances in the Synthesis of 2D MXenes. Adv. Mater. 33, 2103148 (2021)

  28. Bhat, A., Anwer, S., Bhat, K.S., Mohideen, M. I. H., Liao, K., Qurashi, A.: Prospects challenges and stability of 2D MXenes for clean energy conversion and storage applications. npj 2D Mater. Appl. 5, 61 (2021).

  29. Ling, Z.; Ren, C.E.; Zhao, M-Qiang.; Yang, J.; Giammarco, J.M.; Qiu, J.; Barsoum, M.W.; Gogotsi, Y.: Flexible and conductive MXene films and nanocomposites with high capacitance, PNAS, 111(47), 16676–16681 (2014)

  30. Cao, M.-S., Cai, Y.-Z., He, P., Shu, J.-C., Cao, W.-Q., Yuan, J.: 2D MXenes: Electromagnetic property for microwave absorption and electromagnetic interference shielding, Chem. Eng. J. 359, 1265–1302 (2–19)

  31. Vahid Mohammadi, A., Hadjikhani, A., Shahbaz Mohamadi, S., Beidaghi, M.: Two-dimensional vanadium carbide (MXene) as a high-capacity cathode material for rechargeable aluminum batteries. ACS Nano 11, 11135–11144 (2017)

    Article  CAS  Google Scholar 

  32. Lim, H-S., Choi, S. B., Kwon, H., Lim, J-W., Han, C. J., Oh, J-M., Kim, J-W.: Development of a highly flexible composite electrode comprised of Ti3C2-based MXene nanosheets and Ag nanoparticles. Electron. Mater. Lett. 17, 513–520 (2021)

    Article  CAS  Google Scholar 

  33. Pang, S.-Y., Wong, Y.-T., Yuan, S., Liu, Y., Tsang, M.-K., Yang, Z., Huang, H., Wong, W.-T., Hao, J.: Universal strategy for hf-free facile and rapid synthesis of two-dimensional mxenes as multifunctional energy materials. J. Am. Chem. Soc. 141, 9610–9616 (2019)

    Article  CAS  Google Scholar 

  34. Wan kok, S. H., Lee, J., Tan, L.-L., Ong, W-J., Chai, S.-P.:MXene-A New Paradigm Toward Artificial Nitrogen Fixation for Sustainable Ammonia Generation: Synthesis, Properties, and Future Outlook, ACS Materials Lett. 4, 212−245 (2022)

  35. Thirumal, V., Yuvakkumar, R., Kumar, PS., Ravi, G., Keerthana, SP., Velauthapillai, D.: Facile single-step synthesis of MXene@CNTs hybrid nanocomposite by CVD method to remove hazardous pollutants. Chemosphere, 286, 131733 (2022)

  36. Lipton, J., Röhr,Jason A., Dang, V., Goad, A., Maleski, K., Lavini, F., Han, M., Tsai, Esther H. R.,Weng, G.-M., Kon, J., Riedo, E., Gogotsi, Y., Taylor, André D.: Scalable, Highly Conductive, and MicropatternableMXene Films for Enhanced Electromagnetic Interference Shielding. Matter 3, 2,546–557, (2020)

  37. Zhang, C.J., Anasori, B., Seral-Ascaso, A., Park, S.-H., McEvoy, N., Shmeliov, A., Duesberg, G.S., Coleman, J.N., Gogotsi, Y., Nicolosi, V.: Transparent, flexible, and conductive 2D titanium carbide (MXene) films with high volumetric capacitance. Adv. Mater. 29, 1702678 (2017)

    Article  CAS  Google Scholar 

  38. Li, Y., Zhou, B., Shen, Y., He, C., Wang, B., Liu, C., Feng, Y., Shen C.: Scalable manufacturing of flexible, durable Ti3C2Tx MXene/Polyvinylidene fluoride film for multifunctional electromagnetic interference shielding and electro/photo-thermal conversion applications.Composites Part B 217, 108902 (2021)

  39. Zhang, C.J., Kremer, M.P., Seral-Ascaso, A., Park, S.-H., McEvoy, N., Anasori, B., Gogotsi, Y., Nicolosi, V.: Stamping of flexible, coplanar micro-supercapacitors using MXene inks. Adv. Funct. Mater. 28, 1705506 (2018)

    Article  CAS  Google Scholar 

  40. Yu, L., Fan, Z., Shao, Y., Tian, Z., Sun, J., Liu, Z.: Versatile N-doped MXene ink for printed electrochemical energy storage application. Adv. Energy Mater. 9, 1901839 (2019)

    Article  CAS  Google Scholar 

  41. Wen, D., Wang, X., Liu, L., Hu, C., Sun, C., Wu, Y., Zhao, Y., Zhang, J., Li, X., Guobing Ying, G.: Inkjet Printing Transparent and Conductive MXene (Ti3C2Tx) Films: A Strategy for Flexible Energy Storage Devices.ACS Appl. Mater. Interfaces13, 17766−17780 (2021)

  42. Cao, W., Chen, F.-F., Zhu, Y., Zhang, Y.-G., Jiang, Y., Ma, M.-G., Chen, F.: Binary strengthening and toughening of MXene/cellulose nanofiber composite paper with nacre-inspired structure and superior electromagnetic interference shielding properties.ACS Nano12, 4583–4593 (2018)

  43. Lipton, J., Weng, G.-M., Rӧhr, J.A., Wang, H., Taylor, A.D.: Layer-by-Layer assembly of two-dimensional materials: meticulous control on the nanoscale. Matter 2(5), 1148–1165 (2020)

    Article  Google Scholar 

  44. Zhao, M.Q., Trainor, N., Ren, C.E., Torelli, M., Anasori, B., Gogotsi, Y.: Scalable manufacturing of large and flexible sheets of MXene/graphene heterostructures. Adv. Mater. Technol. 4, 1–7 (2019)

    Google Scholar 

  45. Huang, K., Li, C., Li, H., Ren, G., Wang, L., Wang, W., Meng, X.: Photocatalytic Applications of Two-Dimensional Ti3C2MXenes: A Review. ACS Appl. Nano Mater. 3, 9581–9603 (2020)

    Article  CAS  Google Scholar 

  46. Zamhuri, A., Lim, G.P., Ma, N.L., Tee, K.S., Soon, C.F.:MXene in the lens of biomedical engineering: synthesis, applications, and future outlook. BioMed.Eng. Online. 20(1), 33 (2021)

  47. Halim, J., Lukatskaya, M.R., Cook, K.M., Lu, J., Smith, C.R., Naslund, L.-Å., May, S.J., Hultman, L., Gogotsi, Y., Eklund, P., Barsoum, M.W.: Transparent conductive two-dimensional titanium carbide epitaxial thin films. Chem. Mater. 26, 2374–2381 (2014)

    Article  CAS  Google Scholar 

  48. Hantanasirisakul, K., Zhao, M.-Q., Urbankowski, P., Halim, J., Anasori, B., Kota, S., Ren, C.E., Barsoum, M.W., Gogotsi, Y.: Fabrication of Ti3C2TxMXene Transparent Thin Films with Tunable Optoelectronic Properties. Adv. Electron. Mater. 2, 1600050 (2016)

    Article  CAS  Google Scholar 

  49. Boota,M.,Anasori, B., Voigt, C., Zhao,M.Q.,Barsoum,M.W.,Gogotsi,Y.: Pseudocapacitive electrodes produced by oxidant-free polymerization of pyrrole between the layers of 2D titanium carbide (MXene). Adv. Mater. 28 (7), 1517e1522 (2016)

  50. Liu, X., Wu, J., He, J., Zhang, L.: Electromagnetic interference shielding effectiveness of titanium carbide sheets. Mater. Lett. 205, 261–263 (2017)

    Article  CAS  Google Scholar 

  51. Cui, C., Xiang, C., Geng, L., Lai, X., Guo, R., Zhang, Y., Xiao, H., Lan, J., Lin, S., Jiang, S.: Flexible and ultrathin electrospun regenerate cellulose nanofibers and d-Ti3C2Tx (MXene) composite film for electromagnetic interference shielding. J. Alloys Compd. 788, 1246–1255 (2019)

    Article  CAS  Google Scholar 

  52. Zhang, Z., Yang, S., Zhang, P., Zhang, J., Chen, G., Feng, X.: Mechanically strong MXene/Kevlar nanofiber composite membranes as high-performance nanofluidic osmotic power generators. Nat. Commun. 10, 2920 (2019)

    Article  CAS  Google Scholar 

  53. Fan, Y., Li, Z., Wei, J.: Application of Aramid Nanofibers in Nanocomposites: a Brief Review. Polymers 13, 3071 (2021)

    Article  CAS  Google Scholar 

  54. Zhang, B., Wang, W., Tian, M., Ning, N., Zhang,L.: Preparation of aramid nanofiber and its application in polymer reinforcement: A review.Eur. Polym. J. 139, 109996, (2020)

  55. Sang, M., Liu, S., Li, W., Wang, S., Li, J., Li, J., Xuan, S., Gong, X.: Flexible polyvinylidene fluoride (PVDF)/MXene(Ti3C2Tx)/Polyimide(PI) wearable electronic for body Monitoring, thermotherapy and electromagnetic interference shielding.Compos.-A: Appl. Sci. Manuf. 106727 (2021)

  56. Levitt, A., Zhang, J., Dion, G., Gogotsi, Y., Razal, JM.:MXene-based fibers, yarns, and fabrics for wearable energy storage devices. Adv. Funct. Mater. 30(47), 20007 (2020)

  57. Sarycheva, A., Polemi, A., Liu, Y., Dandekar, K., Anasori, B., Gogotsi, Y.: 2D titanium carbide (MXene) for wireless communication. Sci Adv. 4(9), eaau0920 (2018)

  58. Fu, Z., Wang, N., Legut, D., Si, C., Zhang, Q., Du, S., Germann, T.C., Francisco, J.S., Zhang, R.: Rational design of flexible two-dimensional mxenes with multiple functionalities. Chem Rev. 119(23), 11980–12031 (2019)

    Article  CAS  Google Scholar 

  59. Chen, W., Liu, L.-X., Zhang, H.-B., Yu Z.-Z.:Kirigami-inspired highly stretchable, conductive, and hierarchical Ti3C2TxMXene films for efficient electromagnetic interference shielding and pressure sensing. ACS Nano, 15 (4), 7668–7681 (2021)

  60. Yang, Q., Wang, Y., Li, X., Li, H., Wang, Z., Tang, Z., Ma, L., Mo, F., Zhi, C.: Recent progress of MXene-based nanomaterials in flexibleenergy storage and electronic devices. Energy Environ. Mater. 1, 183–195 (2018)

    Article  Google Scholar 

  61. Wang, Y., Wang, X., Li, X., Bai, Y., Xiao, H., Liu, Y., Liu, R., Yuan, G.: Engineering 3D ion transport channels for flexible mxene films with superior capacitive performance. Adv. Funct. Mater. 29, 1900326 (2019)

    Article  CAS  Google Scholar 

  62. Chang, T.-H., Zhang, T., Yang, H., Li, K., Tian, Y., Lee, J.Y., Chen, P.-Y.: Controlled crumpling of two-dimensional titanium Carbide (MXene) for highly stretchable, bendable. Efficient Supercapacitors. ACS Nano 12, 8048–8059 (2018)

    Article  CAS  Google Scholar 

  63. Qin, L., Jiang, J., Tao, Q., Wang, C., Persson, I., Fahlman, M., Persson, P. O. Å., Hou, Rosen, J., Zhang, F.: A flexible semitransparent photovoltaic supercapacitor based on water processed MXene electrodes. J. Mater. Chem. A 8, 5467–5475 (2020)

  64. Tang, Z.,Elfwing, A.,Melianas, A., Bergqvist, J., Bao, Q.,Inganäs, O.: Fully-solution-processed organic solar cells with a highly efficient paper-based light trapping element.J. Mater. Chem. A3, 24289–24296 (2015)

  65. King, PJ., Higgins, TM., De, S., Nicoloso, N., Coleman. JN.: Percolation effects in supercapacitors with thin, transparent carbon nanotube electrodes. ACS Nano. 6(2), 1732–41 (2012)

  66. Vahid Mohammadi, A., Moncada, J., Chen, H., Kayali, E., Orangi, J., Carrero, C.A., Beidaghi, M.: Thick and freestanding MXene/PANI pseudocapacitive electrodes with ultrahigh specific capacitance. J. Mater. Chem. A 6, 22123–22133 (2018)

    Article  CAS  Google Scholar 

  67. Pang, J., Mendes, R.G., Bachmatiuk, A., Zhao, L., Ta, H.Q., Gemming, T., Liu, H., Liu, Z., Rummeli, M.H.: Applications of 2D MXenes in energy conversion and storage systems. Chem. Soc. Rev. 48, 72–133 (2019)

    Article  CAS  Google Scholar 

  68. Agresti, A., Pazniak, A., Pescetelli, S., Di Vito, A., Rossi, D., Pecchia, A., Auf der Maur, M., Liedl, A., Larciprete, R., Kuznetsov, D. V., Saranin, D., Di, Carlo A.: Titanium-carbide MXenes for work function and interface engineering in perovskite solar cells. Nat Mater. 18, 1228–1234 (2019)

  69. Yang, M. K., Lee, J-K.: CNT/AgNW multilayer electrodes on flexible organic solar cells. Electron. Mater. Lett. 16, 573–578 (2020)

    Google Scholar 

  70. Park, I.-J., Kim, T.I., Yoon, T., Kang, S., Cho, H., Cho, N.S., Lee, J.-I., Kim, T.-S., Choi, S.-Y.: Flexible and transparent graphene electrode architecture with selective defect decoration for organic light-emitting diodes. Adv. Funct. Mater. 28, 1704435 (2018)

    Article  CAS  Google Scholar 

  71. Mochizuki, T., Takigami, Y., Kondo, T., Okuzaki, H.: Fabrication of flexible transparent electrodes using PEDOT:PSS and application to resistive touch screen panels. J. Appl. Polym. Sci. 135, 45972 (2018)

    Article  CAS  Google Scholar 

  72. Lee, H.B., Jin, W.-Y., Ovhal, M.M., Kumar, N., Kang, J.-W.: Flexible transparent conducting electrodes based on metal meshes for organic optoelectronic device applications: a review. J. Mater. Chem. C 7, 1087–1110 (2019)

    Article  CAS  Google Scholar 

  73. Lee, J.-C., Lee, JS., Won, P., Park, J. J., Choi, S. H., Ko, S. H., Kim, B.-J., Lee, S.-Y., Joo, Y.-C.: Operation Range-Optimized silver nanowire through junction treatment. Electron. Mater. Lett. 16, 491–497 (2020)

    Google Scholar 

  74. Tang, H., Feng, H., Wang, H., Wan, X., Liang, J., Chen, Y.: Highly Conducting MXene-Silver Nanowire Transparent Electrodes for Flexible Organic Solar Cells. ACS Appl. Mater. Interfaces. 17, 11(28), 25330–25337 (2019)

  75. Xu, S., Wei, G., Li, J., Han, W., Gogotsi, Y.: Flexible MXene-graphene electrodes with high volumetric capacitance for integrated co-cathode energy conversion/storage devices. J. Mater. Chem. A 5, 17442–17451 (2017)

    Article  CAS  Google Scholar 

  76. Ahn, S., Han, T.H., Maleski, K., Song, J., Kim, Y.H., Park, M.H., Zhou, H., Yoo, S., Gogotsi, Y., Lee, T.W.: A 2D titanium carbide mxene flexible electrode for high-efficiency light-emitting diodes. Adv. Mater. 32(23), 1–7 (2020)

    Article  CAS  Google Scholar 

  77. Lee, S., Kim, E.H., Yu, S., Kim, H., Park, C., Park, T.H., Han, H., Lee, S.W., Baek, S., Jin, W.: Alternating-current MXene polymer light-emitting diodes. Adv. Funct. Mater. 30(32), 2001224 (2020)

    Article  CAS  Google Scholar 

  78. Lee, S., Kim, E.H., Yu, S., Kim, H., Park, C., Lee, S.W., Han, H., Jin, W., Lee, K., Lee, C.E., Jang, J., Koo, C.M., Park, C.: Polymer-laminated Ti3C2TX MXene electrodes for transparent and flexible field-driven electronics. ACS Nano 15(5), 8940–8952 (2021)

    Article  CAS  Google Scholar 

  79. Wang, C.H., Kurra, N., Alhabeb, M., Chang, J.K., Alshareef, H.N., Gogotsi, Y.: Titanium carbide (MXene) as a current collector for lithium-ion batteries. ACS Omega 3(10), 12489–12494 (2018)

    Article  CAS  Google Scholar 

  80. Liu, K., Fan, Y., Ali, A., Shen, P.: A flexible and conductive MXene-coated fabric integrated with in situ sulfur loaded MXene nanosheets for long-life rechargeable Li–S batteries. Nanoscale 13, 2963–2971 (2021)

    Article  CAS  Google Scholar 

  81. Dong, Y., Mallineni, S.S.K., Maleski, K., Behlow, H., Mochalin, V.N., Rao, A.M., Gogotsi, Y., Podila, R.: Metallic MXenes: a new family of materials for fexible triboelectric nanogenerators. Nano Energy 44, 103–110 (2018)

    Article  CAS  Google Scholar 

  82. Cai, Y.-W., Zhang, X.-N., Wang, G.-G., Li, G.-Z., Zhao, D.-Q., Sun, N., Li, F., Zhang, H.-Y., Han, J.-C., Yang, Y.: A flexible ultra-sensitive triboelectric tactile sensor of wrinkled PDMS/MXene composite films for E-skin. Nano Energy 81, 105663 (2021)

    Article  CAS  Google Scholar 

  83. Zhang, Z., Yan, Q., Liu, Z., Zhao, X., Wang, Z., Sun, J., Wang, Z. L., Wang, R., Li, L.: Flexible MXene composed triboelectric nanogenerator via facile vacuum-assistant filtration method for self-powered biomechanical sensing.Nano Energy 88, 106257 (2021)

  84. Bhatta, T., Maharjan, P., Cho, H., Park, C., Yoon, S.H., Sharma, S., Salauddin, M., Rahman, M.T., Rana, S.M.S., Park, J.Y.: High-performance triboelectric nanogenerator based on MXene functionalized polyvinylidene fluoride composite nanofibers. Nano Energy 81, 105670 (2021)

    Article  CAS  Google Scholar 

  85. Wu, L., Xu, C., Fan, M., Tang, P., Zhang, R., Yang, S., Pan, L., Bin, Y.: Lotus root structure-inspired Ti3C2-MXene-Based flexible and wearable strain sensor with ultra-high sensitivity and wide sensing range. Compos. Part A Appl. Sci. 152, 106702 (2022)

    Article  CAS  Google Scholar 

  86. Zhao, L., Wang, L., Zheng, Y., Zhao, S., Wei, W., Zhang, D., Fu, X., Jiang, K., Shen, G., Han, W.: Highly-stable polymer-crosslinked 2D MXene-based flexible biocompatible electronic skins for in vivo biomonitoring. Nano Energy 84, 105921 (2021)

    Article  CAS  Google Scholar 

  87. Meng, W., Liu, X., Song, H., Xie, Y., Shi, X., Dargusch, M., Chen, Z.-G., Tang, Z., Lu, S.: Advances and challenges in 2D MXenes: From structures to energy storage and conversions. Nano Today 40, 101273 (2021)

    Article  CAS  Google Scholar 

  88. Habib, T., Zhao, X., Shah, S.A. Chen, Y., Sun, W., An, H., Lutkenhaus, J. L., Radovic, M., Green, M. J (2019) Oxidation stability of Ti3C2Tx MXene nanosheets in solvents and composite films. npj 2D Mater. Appl. 3: 8

  89. Treifeldt, J.E., Firestein, K.L., Fernando, J.F.S., Zhang, C., Siriwardena, D.P., Lewis, C.-E.M., Golberg, D.V.: The effect of Ti3AlC2 MAX phase synthetic history on the structure and electrochemical properties of resultant Ti3C2MXenes. Mater. Des. 199, 109403 (2021)

    Article  CAS  Google Scholar 

  90. Shuck, C.E., Han, M., Maleski, K., Hantanasirisakul, K., Kim, S.J., Choi, J., Reil, W.E.B., Gogotsi, Y.: Effect of Ti3AlC2 MAX Phase on Structure and Properties of Resultant Ti3C2TxMXene. ACS Appl. Nano Mater. 2, 3368–3376 (2019)

    Article  CAS  Google Scholar 

  91. Sun, W., Shah, S.A., Chen, Y., Tan, Z., Gao, H., Habib, T., Radovic, M., Green, M.J.: Electrochemical etching of Ti2AlC to Ti2CTx (MXene) in low-concentration hydrochloric acid solution. J. Mater. Chem. A. 5, 21663–21668 (2017)

    Article  CAS  Google Scholar 

  92. Li, T., Yao, L., Liu, Q., Gu, J., Luo, R., Li, J., Yan, X., Wang, W., Liu, P., Chen, B., Zhang, W., Abbas, W., Naz, R., Zhang, D.: Fluorine-free synthesis of high-purity Ti3C2Tx (T=OH, O) via alkali treatment. Angew. Chem. Int. Ed. 57, 6115–6119 (2018)

    Article  CAS  Google Scholar 

  93. Li, Y., Shao, H., Lin, Z., Lu, J., Liu, L., Duployer, B., Persson, P.O.Å., Eklund, P., Hultman, L., Chen, M., Li, K., Zha, X.-H., Du, S., Rozier, P., Chai, Z., Raymundo-Piñero, E., Taberna, P.-L., Simon, P., Huang, Q.: A general Lewis acidic etching route for preparing MXenes with enhanced electrochemical performance in non-aqueous electrolyte. Nat. Mater. 19(8), 894–899 (2020)

    Article  CAS  Google Scholar 

  94. Ibragimova, R., Puska, M.J., Komsa, H.-P.: PH-dependent distribution of functional groups on titanium-Based MXenes. ACS Nano 13, 9171–9181 (2019)

    Article  CAS  Google Scholar 

  95. Qian, A., Seo, J.Y., Shi, H., Lee, J.Y., Chung, C.-H.: Surface functional groups and electrochemical behavior in dimethyl sulfoxide-delaminated Ti3C2TxMXene. Chemsuschem 11(21), 3719–4372 (2018)

    Article  CAS  Google Scholar 

  96. Zhang, C.J., Pinilla, S., McEyoy, N., Cullen, C.P., Anasori, B., Long, E., Park, S.H., Seral-Ascaso, A., Shmeliov, A., Krishnan, D., Morant, C., Liu, X.H., Duesberg, G.S., Gogotsi, Y., Nicolosi, V.: Oxidation stability of colloidal two-dimensional titanium carbides (MXenes). Chem. Mater. 29, 4848–4856 (2017)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Industry Technology R&D program (20006467) funded by the Ministry of Trade, Industry & Energy (MOTIE, Korea). This work was also supported by National University Development Project in 2020.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jong-Woong Kim.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meena, J.S., Choi, S.B. & Kim, JW. Review on Ti3C2-Based MXene Nanosheets for Flexible Electrodes. Electron. Mater. Lett. 18, 256–274 (2022). https://doi.org/10.1007/s13391-022-00337-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13391-022-00337-9

Keywords

Navigation