Skip to main content
Log in

Transparent Electrode Techniques for Semitransparent and Tandem Perovskite Solar Cells

  • Review Paper
  • Published:
Electronic Materials Letters Aims and scope Submit manuscript

Abstract

Inorganic–organic halide perovskite solar cells have attracted significant attention to the photovoltaic community considering their high-efficiency, tunable bandgap, low-cost, and easy fabrication. Perovskite solar cells are especially an attractive top cell partner for tandem applications with silicon bottom cells and other solar cell types with lower bandgap absorbers. For such tandem applications, semitransparent perovskite solar cell techniques with high near-infrared transparency become important, since the incident light needs to efficiently reach the bottom cell. This review article will summarize the status and progress of perovskite-based tandem solar cells development, while focusing on the transparent electrode approaches and techniques. Future directions and challenges of transparent electrodes for semitransparent and tandem perovskite-based photovoltaics will also be discussed.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Copyright 2018, Wiley

Fig. 2

Copyright 2020, American Association for the Advancement of Science

Fig. 3

Copyright 2020, American Association for the Advancement of Science

Fig. 4

Copyright 2020, Wiley Publishing

Fig. 5

Copyright 2017, Wiley Publishing

Fig. 6

Copyright 2019, Royal Society of Chemistry (RSC) Publishing

Similar content being viewed by others

References

  1. Gunawan, O., Pae, S.R., Bishop, D.M., Lee, Y.S., Virgus, Y., Jeon, N.J., Noh, J.H., Shao, X., Todorov, T., Mitzi, D.B., Shin, B.: Carrier-resolved photo hall measurement in world record-quality perovskite and kesterite solar absorbers. Nature 575(7781), 151–155 (2019)

    Article  CAS  Google Scholar 

  2. Dunlap-Shohl, W.A., Zhou, Y., Padture, N.P., Mitzi, D.B.: Synthetic approaches for halide perovskite thin films. Chem Rev 119(5), 3193–3295 (2019)

    Article  CAS  Google Scholar 

  3. Hwang, T., Lee, B., Kim, J., Lee, S., Gil, B., Yun, A.J., Park, B.: From Nanostructural evolution to dynamic interplay of constituents: perspectives for perovskite solar cells. Adv Mater 30, 1704208 (2018)

    Article  Google Scholar 

  4. McMeekin, D.P., Sadoughi, G., Rehman, W., Eperon, G.E., Saliba, M., Hörantner, M.T., Haghighirad, A., Sakai, N., Korte, L., Rech, B., Johnston, M.B., Herz, L.M., Snaith, H.J.: A mixed-cation lead mixed-halide perovskite absorber for tandem solar cells. Science 351, 6269 (2016)

    Article  Google Scholar 

  5. Im, J.-H., Lee, C.-R., Lee, J.-W., Park, S.-W., Park, N.-G.: 6.5% efficient perovskite quantum-dot-sensitized solar cell. Nanoscale 3, 4088 (2011)

    Article  CAS  Google Scholar 

  6. Green, M.A.: Commercial progress and challenges for photovoltaics. Nature Energy 1, 1–4 (2016)

    Article  Google Scholar 

  7. Li, H., Zhang, W.: Perovskite tandem solar cells: from fundamentals to commercial deployment. Chem Rev 120, 9835–9950 (2020)

    Article  CAS  Google Scholar 

  8. Wang, Z., Song, Z., Yan, Y., Liu, S., Yang, D.: Perovskite—a perfect top cell for tandem devices to break the s-q limit. Adv Sci 6, 1801704 (2019)

    Article  Google Scholar 

  9. Werner, J., Niesen, B., Ballif, C.: Perovskite/silicon tandem solar cells: marriage of convenience or true love story? – an overview. Adv Mater Interfaces 5(1), 1700731 (2018)

    Article  Google Scholar 

  10. Brandt, R.E., Young, M., Park, H.H., Dameron, A., Chua, D., Lee, Y.S., Teeter, G., Gordon, R.G., Buonassisi, T.: Band offsets of n-type electron-selective contacts on cuprous oxide (Cu2O) for photovoltaics. Appl Phys Lett 105, 263901 (2014)

    Article  Google Scholar 

  11. Yu, Z., Yang, Z., Ni, Z., Shao, Y., Chen, B., Lin, Y., Wei, H., Yu, Z.J., Holman, Z., Huang, J.: Simplified interconnection structure based on C60/SnO2-x for all-perovskite tandem solar cells. Nat Energy 5, 657–665 (2020)

    Article  CAS  Google Scholar 

  12. Tong, J., Song, Z., Kim, D.H., Chen, X., Chen, C., Palmstrom, A.F., Ndione, P.F., Reese, M.O., Dunfield, S.P., Reid, O.G., Liu, J., Zhang, F., Harvey, S.P., Li, Z., Christensen, S.T., Teeter, G., Zhao, D., Al-Jassim, M.M., van Hest, M.F.A.M., Beard, M.C., Shaheen, S.E., Berry, J.J., Yan, Y., Zhu, K.: Carrier lifetimes of >1 ms in Sn-Pb perovskites enable efficient all-perovskite tandem solar cells. Science 364, 475–479 (2019)

    Article  CAS  Google Scholar 

  13. Hwang, S., Larina, L., Lee, H., Kim, S., Choi, K.S., Jeon, C., Ahn, B.T., Shin, B.: Wet pretreatment-induced modification of Cu(In, Ga)Se2/Cd-Free ZnTiO buffer interface. ACS Appl Mater Interfaces 10, 20920–20928 (2018)

    Article  CAS  Google Scholar 

  14. Lee, S.J., Shin, S.S., Kim, Y.C., Kim, D., Ahn, T.K., Noh, J.H., Seo, J., Seok, S.I.: Fabrication of efficient formamidinium tin iodide perovskite solar cells through SnF2−Pyrazine complex. J Am Chem Soc 138, 3974–3977 (2016)

    Article  CAS  Google Scholar 

  15. Yang, Y., Chen, Q., Hsieh, Y.-T., Song, T.-B., De Marco, N., Zhou, H., Yang, Y.: Multilayer Transparent top electrode for solution processed perovskite/Cu(In, Ga)(Se, S)2 four terminal tandem solar cells. ACS Nano 9(7), 7714–7721 (2015)

    Article  CAS  Google Scholar 

  16. Park, H.H., Heasley, R., Sun, L., Steinmann, V., Jaramillo, R., Hartman, K., Chakraborty, R., Sinsermsuksakul, P., Chua, D., Buonassisi, T., Gordon, R.G.: Co-optimization of SnS absorber and Zn(O, S) buffer materials for improved solar cells. Prog Photovolt Res Appl 23, 901–908 (2015)

    Article  CAS  Google Scholar 

  17. Green, M.A.: The passivated emitter and rear cell (PERC): from conception to mass production. Sol. Energy Mater. Sol. Cells 143, 190–197 (2015)

    Article  CAS  Google Scholar 

  18. Steinmann, V., Jaramillo, R., Hartman, K., Chakraborty, R., Brandt, R.E., Poindexter, J.R., Lee, Y.S., Sun, L., Polizzotti, A., Park, H.H., Gordon, R.G., Buonassisi, T.: 3.88% Efficient tin sulfi de solar cells using congruent thermal evaporation. Adv Mater 26, 7488–7492 (2014)

    Article  CAS  Google Scholar 

  19. Kothandaraman, R.K., Jiang, Y., Feurer, T., Tiwari, A.N., Fu, F.: Near-infrared-transparent perovskite solar cells and perovskite-based tandem photovoltaics. Small Method 4, 2000395 (2020)

    Article  Google Scholar 

  20. Jošt, M., Kegelmann, L., Korte, L., Albrecht, S.: Monolithic perovskite tandem solar cells: a review of the present status and advanced characterization methods toward 30% efficiency. Adv Energy Mater 26, 1904102 (2020)

    Article  Google Scholar 

  21. Lal, N.N., Dkhissi, Y., Li, W., Hou, Q., Cheng, Y., Bach, U.: Perovskite tandem solar cells. Adv Energy Mater 1602761, 1–18 (2017)

    Google Scholar 

  22. Todorov, T., Gunawan, O., Guha, S.: A road towards 25% efficiency and beyond: perovskite tandem solar cells. Mol Syst Des Eng 1, 370–376 (2016)

    Article  CAS  Google Scholar 

  23. Kim, G., Moon, C.S., Yang, T.-Y., Kim, Y.Y., Chung, J., Jung, E.H., Shin, T.J., Jeon, N.J., Park, H.H., Seo, J.: A Thermally induced perovskite crystal control strategy for efficient and photostable wide-bandgap perovskite solar cells. Solar RRL 4, 2000033 (2020)

    Article  CAS  Google Scholar 

  24. Knight, A.J., Herz, L.M.: Preventing phase segregation in mixed-halide perovskites: a perspective. Energy Environ. Sci. 13, 2024 (2020)

    Article  CAS  Google Scholar 

  25. Gil, B., Yun, A.J., Lee, Y., Kim, J., Lee, B., Park, B.: Recent progress in inorganic hole transport materials for efficient and stable perovskite solar cells. Electron. Mater. Lett. 15, 505–524 (2019)

    Article  CAS  Google Scholar 

  26. Chen, B., Zheng, X., Bai, Y., Padture, N.P., Huang, J.: Progress in tandem solar cells based on hybrid organic-inorganic perovskites. Adv Energy Mater 2017, 1602400 (2017)

    Article  Google Scholar 

  27. Meyer, J., Hamwi, S., Kröger, M., Kowalsky, W., Riedl, T., Kahn, A.: Transition metal oxides for organic electronics: energetics. Device Phys Appl. Adv Mater 24, 5408–5427 (2012)

    CAS  Google Scholar 

  28. Hu, Y., Song, L., Chen, Y., Huang, W.: Two-terminal perovskites tandem solar cells: recent advances and perspectives. Solar RRL 3, 1900080 (2019)

    Article  Google Scholar 

  29. NREL.: Efficiency Chart: available at: http://www.nrel.gov/pv/.

  30. Chen, B., Baek, S.-W., Hou, Y., Aydin, E., De Bastiani, M., Scheffel, B., Proppe, A., Huang, Z., Wei, M., Wang, Y.-K., Jung, E.-H., Allen, T.G., Van Kerschaver, E., de Arquer, F.P.G., Saidaminov, M.I., Hoogland, S., De Wolf, S., Sargent, E.H.: Enhanced optical path and electron diffusion length enable high-efficiency perovskite tandems. Nature Communications 11, 1257 (2020)

    Article  CAS  Google Scholar 

  31. Werner, J., Barraud, L., Walter, A., Bräuninger, M., Sahli, F., Sacchetto, D., Tétreault, N., Paviet-Salomon, B., Moon, S.-J., Allebé, C., Despeisse, M., Nicolay, S., De Wolf, S., Niesen, B., Ballif, C.: Efficient near-infrared-transparent perovskite solar cells enabling direct comparison of 4terminal and monolithic perovskite/silicon tandem cells. ACS Energy Lett 1, 474–480 (2016)

    Article  CAS  Google Scholar 

  32. Duong, T., Wu, Y., Shen, H., Peng, J., Fu, X., Jacobs, D., Wang, E., Kho, T.C., Fong, K.C., Stocks, M., Franklin, E., Blakers, A., Zin, N., McIntosh, K., Li, W., Cheng, Y., White, T.P., Weber, K., Catchpole, K.: Rubidium multication perovskite with optimized bandgap for perovskite-silicon tandem with over 26% efficiency. Adv Energy Mater 7, 1700228 (2017)

    Article  Google Scholar 

  33. Jaysankar, M., Filipic, M., Zielinski, B., Schmager, R., Song, W., Qiu, W., Paetzold, U.W., Aernauts, T., Debucquoy, M., Gehlhaara, R., Poortmans, J.: Perovskite–silicon tandem solar modules with optimised light harvesting. Energy Environ Sci 7, 1489 (2018)

    Article  Google Scholar 

  34. Zhang, D., Najafi, M., Zardetto, V., Dörenkämper, M., Zhou, X., Veenstra, S., Geerligs, L.J., Aernouts, T., Andriessene, R.: High efficiency 4-terminal perovskite/c-Si tandem cells. Sol. Energy Mater. Sol. Cells 188, 1–5 (2018)

    Article  CAS  Google Scholar 

  35. Quiroz, C.O.R., Shen, Y., Salvador, M., Forberich, K., Schrenker, N., Spyropoulos, G.D., Heumuller, T., Wilkinson, B., Kirchartz, T., Spiecker, E., Verlinden, P.J., Zhang, X., Green, M.A., Ho-Baillie, A., Brabec, C.J.: Balancing electrical and optical losses for efficient 4-terminal Si–perovskite solar cells with solution processed percolation electrodes. J Mater Chem A 6, 3583–3592 (2018)

    Article  Google Scholar 

  36. Jaysankar, M., Raul, B.A.L., Bastos, J., Burgess, C., Weijtens, C., Creatore, M., Aernouts, T., Kuang, Y., Gehlhaar, R., Hadipour, A., Poortmans, J.: Minimizing voltage loss in wide-bandgap perovskites for tandem solar cells. ACS Energy Lett 4, 259–264 (2019)

    Article  CAS  Google Scholar 

  37. Aydin, E., De Bastiani, M., Yang, X., Sajjad, M., Aljamaan, F., Smirnov, Y., Hedhili, M.N., Liu, W., Allen, T.G., Xu, L., Kerschaver, E.V., Morales-Masis, M., Schwingenschlögl, U., De Wolf, S.: Zr-doped indium oxide (IZRO) transparent electrodes for perovskite-based tandem solar cells. Adv Funct Mater 29(25), 1901741 (2019)

    Article  Google Scholar 

  38. Wang, Z., Zhu, X., Zuo, S., Chen, M., Zhang, C., Wang, C., Ren, X., Yang, Z., Liu, Z., Xu, X., Chang, Q., Yang, S., Meng, F., Liu, Z., Yuan, N., Ding, J., Liu, S., Yang, D.: 27%-Efficiency four-terminal perovskite/silicon tandem solar cells by sandwiched gold nanomesh. Adv. Func. Mater. 30, 1908298 (2020)

    Article  CAS  Google Scholar 

  39. Park, H.H., Kim, J.K.G., Jung, H., Kim, S., Moon, C.S., Lee, S.J., Shin, S.S., Hao, X., Yun, J.S., Green, M.A., Ho-Baillie, A.W.Y., Jeon, N.J., Yang, T.-Y., Seo, J.: Transparent electrodes consisting of a surface-treated buffer layer based on tungsten oxide for semitransparent perovskite solar cells and four-terminal tandem applications. Small Methods 4(5), 2000074 (2020)

    Article  CAS  Google Scholar 

  40. Duong, T., Pham, H., Kho, T.C., Phang, P., Fong, K.C., Yan, D., Yin, Y., Peng, J., Mahmud, M.A., Gharibzadeh, S., Nejand, B.A., Hossain, I.M., Khan, M.R., Mozaffari, N., Wu, Y.L., Shen, H., Zheng, J., Mai, H., Liang, W., Samundsett, C., Stocks, M., McIntosh, K., Andersson, G.G., Lemmer, U., Richards, B.S., Paetzold, U.W., Ho-Ballie, A., Liu, Y., Macdonald, D., Blakers, A., Wong-Leung, J., White, T., Weber, K., Catchpole, K.: High efficiency perovskite-silicon tandem solar cells: effect of surface coating versus bulk incorporation of 2D perovskite. Adv Energy Mater 10, 1903553 (2020)

    Article  CAS  Google Scholar 

  41. Sahli, F., Kamino, J.W.B.A., Bräuninger, M., Monnard, R., Paviet-Salomon, B., Barraud, L., Ding, L., Diaz Leon, J.J., Sacchetto, D., Cattaneo, G., Despeisse, M., Boccard, M., Nicolay, S., Jeangros, Q., Niesen, B., Ballif, C.: Fully textured monolithic perovskite/silicon tandem solar cells with 25.2% power conversion efficiency. Nat Mater 17, 820–826 (2018)

    Article  CAS  Google Scholar 

  42. B Chen, Z Yu, K Liu, X Zheng, Y Liu, J Shi, D Spronk, PN Rudd, Z Holman, J Huang (2019) Grain Engineering for Perovskite/Silicon Monolithic Tandem Solar Cells with Efficiency of 254%. Joule 3: 1–4

  43. Shen, H., Jacobs, S.T.O.D.A., Yalamanchili, S., Wan, Y., Yan, D., Phang, P., Duong, T., Wu, Y., Yin, Y., Samundsett, C., Peng, J., Wu, N., White, T.P., Andersson, G.G., Lewis, N.S., Catchpole, K.R.: In situ recombination junction between p-Si and TiO2 enables high-efficiency monolithic perovskite/Si tandem cells. Sci Adv 4, 1–12 (2018)

    Article  Google Scholar 

  44. PV magazine: https://www.pv-magazine.com/2018/06/26/oxfordpv-hits-world-record-efficiency-for-perovskite-silicon-tandem-cell/. Accessed July 2019

  45. Mazzarella, L., Kirner, Y.H.L.S., Morales-Vilches, A.B., Korte, L., Albrecht, S., Crossland, E., Stannowski, B., Case, C., Snaith, H.J., Schlatmann, R.: Infrared light management using a nanocrystalline silicon oxide interlayer in monolithic perovskite/silicon heterojunction tandem solar cells with efficiency above 25%. Adv Energy Mater 9, 1803241 (2019)

    Article  Google Scholar 

  46. Nogay, G., Sahli, F., Werner, J., Monnard, R., Boccard, M., Despeisse, M., Haug, F.-J., Jeangros, Q., Ingenito, A., Ballif, C.: 251%-Efficient monolithic perovskite/silicon tandem solar cell based on a p-type monocrystalline textured silicon wafer and high-temperature passivating contacts. ACS Energy Lett 4, 844–845 (2019)

    Article  CAS  Google Scholar 

  47. Kohnen, E., Jost, M., Morales-Vilches, A.B., Tockhorn, P., Al-Ashouri, A., Korte, L., Rech, B., Schlatmann, R., Albrecht, S.: Highly efficient monolithic perovskite silicon tandem solar cells: analyzing the influence of current mismatch on device performance. Sustain Energy Fuels 3, 1995 (2019)

    Article  Google Scholar 

  48. PV magazine: https://pv-magazine-usa.com/2020/01/31/tandemcells-approaching-30-efficiency/#:~:text=Scientists%20at%20the%20Helmholtz%20Zentrum,efficiency%20mark%20is%20within%20reach. Accessed July 2020

  49. Hou, Y., Aydin, E., De Bastiani, M., Xiao, C., Isikgor, F.H., Xue, D.-J., Chen, B., Chen, H., Bahrami, B., Chowdhury, A.H., Johnston, A., Baek, S.-W., Huang, Z., Wei, M., Dong, Y., Troughton, J., Jalmood, R., Mirabelli, A.J., Allen, T.G., Van Kerschaver, E., Saidaminov, M.I., Baran, D., Qiao, Q., Zhu, K., De Wolf, S., Sargent, E.H.: Efficient tandem solar cells with solution-processed perovskite on textured crystalline silicon. Science 367, 1135–1140 (2020)

    Article  CAS  Google Scholar 

  50. Kim, D., Jung, H.J., Park, I.J., Larson, B.W., Dunfield, S.P., Xiao, C., Kim, J., Tong, J., Boonmongkolras, P., Ji, S.G., Zhang, F., Pae, S.R., Kim, M., Kang, S.B., Dravid, V., Berry, J.J., Kim, J.Y., Zhu, K., Kim, D.H., Shin, B.: Efficient, stable silicon tandem cells enabled by anion engineered wide-bandgap perovskites. Science 368(6487), 155–160 (2020)

    Article  CAS  Google Scholar 

  51. Xu, J., Boyd, C.C., Yu, Z.J., Palmstrom, A.F., Witter, D.J., Larson, B.W., France, R.M., Werner, J., Harvey, S.P., Wolf, E.J., Weigand, W., Manzoor, S., van Hest, M.F.A.M., Berry, J.J., Luther, J.M., Holman, Z.C., McGehee, M.D.: Triple-halide wide–band gap perovskites with suppressed phase segregation for efficient tandems. Science 367, 1097–1104 (2020)

    Article  CAS  Google Scholar 

  52. Jacobs, D.A., Sahli, M.L.F., Richards, B.S., White, T.P., Ballif, C., Catchpole, K.R., Paetzold, U.W.: Light management: a key concept in high-efficiency perovskite/ silicon tandem photovoltaics. J Phys Chem Lett 10, 3159–3170 (2019)

    Article  CAS  Google Scholar 

  53. Bush, K.A., Palmstrom, A.F., Yu, Z.J., Boccard, M., Cheacharoen, R., Mailoa, J.P., McMeekin, D.P., Hoye, R.L.Z., Bailie, C.D., Leijtens, T., Peters, I.M., Minichetti, M.C., Rolston, N., Prasanna, R., Sofia, S., Harwood, D., Ma, W., Moghadam, F., Snaith, H.J., Buonassisi, T., Holman, Z.C., Bent, S.F., McGehee, M.D.: 236%-efficient monolithic perovskite/silicon tandem solar cells with improved stability. Nat Energy 2, 17009 (2017)

    Article  CAS  Google Scholar 

  54. Park, H.H., Heasley, R., Gordon, R.G.: Atomic layer deposition of Zn(O, S) thin films with tunable electrical properties by oxygen annealing. Appl. Phys. Lett. 102, 132110 (2013)

    Article  Google Scholar 

  55. Yun, A.J., Kim, J., Hwang, T., Park, B.: Origins of efficient perovskite solar cells with low-temperature processed SNO2 electron transport layer. ACS Applied Energy Materials 2, 3554–3560 (2019)

    Article  CAS  Google Scholar 

  56. Jung, K.-H., Seo, J.-Y., Lee, S., Shin, H., Park, N.-G.: Solution-processed SnO2 thin film for a hysteresis-free planar perovskite solar cell with a power conversion efficiency of 19.2%. J Mater Chem A 5, 24790 (2017)

    Article  CAS  Google Scholar 

  57. Peng, J., Duong, T., Zhou, X., Shen, H., Wu, Y., Mulmudi, H.K., Wan, Y., Zhong, D., Li, J., Tsuzuki, T., Weber, K.J., Catchpole, K.R., White, T.P.: Efficient indium-doped TIOx electron transport layers for high-performance perovskite solar cells and perovskite-silicon tandems. Adv Energy Mater 7, 1601768 (2017)

    Article  Google Scholar 

  58. Kim, J., Lee, Y., Yun, A.J., Gil, B., Park, B.: Interfacial modification and defect passivation by the cross-linking interlayer for efficient and stable CuSCN-based perovskite solar cells. ACS Appl. Mater. Interfaces. 11, 46818–46824 (2019)

    Article  CAS  Google Scholar 

  59. Werner, J., Geissbühler, A., Dabirian, S., Nicolay, M., Morales-Masis, S.D., Wolf, B., Niesen, C.: Ballif, parasitic absorption reduction in metal oxide-based transparent electrodes: application in perovskite solar cells. ACS Appl. Mater. Interfaces. 8, 17260–17267 (2016)

    Article  CAS  Google Scholar 

  60. Park, H.H., Jayaraman, A., Heasley, R., Yang, C., Hartle, L., Mankad, R., Haight, R., Mitzi, D.B., Gunawan, O., Gordon, R.G.: Atomic layer deposition of Al-incorporated Zn(O, S) thin films with tunable electrical properties. Appl. Phys. Lett. 105, 202101 (2014)

    Article  Google Scholar 

  61. Kim, Y., Lee, W., Jung, D.-R., Kim, J., Nam, S., Kim, H., Park, B.: Optical and electronic properties of post-annealed ZnO: Al thin films. Appl Phy Lett 96, 171902 (2010)

    Article  Google Scholar 

  62. Ellmer, K.: Past achievements and future challenges in the development of optically transparent electrodes. Nat. Photonics 6(2012), 809–817 (2012)

    Article  CAS  Google Scholar 

  63. Loper, P., Moon, S.-J., de Nicolas, S.M., Niesen, B., Ledinsky, M., Nicolay, S., Bailat, J., Yum, J.-H., De Wolf, S., Ballif, C.: Organic–inorganic halide perovskite/crystalline silicon four-terminal tandem solar cells. Phys Chem Chem Phys 17, 1619 (2015)

    Article  CAS  Google Scholar 

  64. Shen, H., Duong, T., Peng, J., Jacobs, D., Wu, N., Gong, J., Wu, Y., Karuturi, S.K., Fu, X., Weber, K., Xiao, X., White, T.P., Catchpole, K.: Mechanically-stacked perovskite/CIGS tandem solar cells with efficiency of 23.9% and reduced oxygen sensitivity. Energy Environ Sci 11, 394 (2018)

    Article  CAS  Google Scholar 

  65. Werner, J., Dubuis, G., Walter, A., Löper, P., Moon, S.-J., Nicolay, S., Morales-Masis, M., De Wolf, S., Niesen, B., Ballif, C.: Sputtered rear electrode with broadband transparency for perovskite solar cells. Sol. Energy Mater. Sol. Cells 141, 407–413 (2015)

    Article  CAS  Google Scholar 

  66. Fu, F., Feurer, T., Weiss, T.P., Pisoni, S., Avancini, E., Andres, C., Buecheler, S., Tiwari, A.N.: High-efficiency inverted semi-transparent planar perovskite solar cells in substrate configuration. Nature Energy 2, 16190 (2016)

    Article  Google Scholar 

  67. Kranz, L., Abate, A., Feurer, T., Fu, F., Avancini, E., Löckinger, J., Reinhard, P., Zakeeruddin, S.M., Grätzel, M., Buecheler, S., Tiwari, A.N.: High-efficiency polycrystalline thin film tandem solar cells. J Phys Chem Lett 6, 2676–2681 (2015)

    Article  CAS  Google Scholar 

  68. Werner, J., Weng, C.-H., Walter, A., Fesquet, L., Seif, J.P., De Wolf, S., Niesen, B., Ballif, C.: Efficient monolithic perovskite/silicon tandem solar cell with cell area >1 cm2. J Phys Chem Lett 7, 161–166 (2016)

    Article  CAS  Google Scholar 

  69. Fu, F., Feurer, T., Jager, T., Avancini, E., Bissig, B., Yoon, S., Buecheler, S., Tiwari, A.N.: Low-temperature-processed efficient semi-transparent planar perovskite solar cells for bifacial and tandem applications. Nat Commun 6, 8932 (2015)

    Article  CAS  Google Scholar 

  70. Park, H.H., Larrabee, T.J., Ruppalt, L.B., Culbertson, J.C., Prokes, S.M.: Tunable electrical properties of vanadium oxide by hydrogenplasma-treated atomic layer deposition. ACS Omega 2, 1259–1264 (2017)

    Article  CAS  Google Scholar 

  71. Bush, K.A., Baillie, C.D., Chen, Y., Bowring, A.R., Wang, W., Ma, W., Leijtens, T., Moghadam, F., McGehee, M.D.: Thermal and environmental stability of semi-transparent perovskite solar cells for tandems enabled by a solution-processed nanoparticle buffer layer and sputtered ITO electrode. Adv Mater 28, 3937–3943 (2016)

    Article  CAS  Google Scholar 

  72. Chen, B., Bai, Y., Yu, Z., Li, T., Zheng, X., Dong, Q., Shen, L., Boccard, M., Gruverman, A., Holman, Z., Huang, J.: Efficient semitransparent perovskite solar cells for 23.0%-effi ciency perovskite/silicon four-terminal tandem cells. Adv Energy Mater 6, 1601128 (2016)

    Article  Google Scholar 

  73. Zhao, J., Hu, K.O.B.T., Pourdavoud, N., Becker, T., Gahlmann, T., Heiderhoff, R., Polywka, A., Görrn, P., Chen, Y., Cheng, B., Riedl, T.: Self-encapsulating thermostable and air-resilient semitransparent perovskite solar cells. Adv Energy Mater 7, 1602599 (2017)

    Article  Google Scholar 

  74. Han, K., Xie, M., Zhang, L., Yan, L., Wei, J., Ji, G., Luo, Q., Lin, J., Hao, Y., Ma, C.-Q.: Fully solution processed semi-transparent perovskite solar cells with spraycoated silver nanowires/ZnO composite top electrode. Sol. Energy Mater. Sol. Cells 185, 399–405 (2018)

    Article  CAS  Google Scholar 

  75. Yang, K., Li, F., Zhang, J., Veeramalai, C.P., Guo, T.: All-solution processed semi-transparent perovskite solar cells with silver nanowires electrode. Nanotechnology 27, 095202 (2016)

    Article  Google Scholar 

  76. Guo, F., Azimi, H., Hou, Y., Przybilla, T., Hu, M., Bronnbauer, C., Langner, S., Spiecker, E., Forberich, K., Brabec, C.J.: High-performance semitransparent perovskite solar cells with solution-processed silver nanowires as top electrodes. Nanoscale 7, 1642 (2015)

    Article  CAS  Google Scholar 

  77. You, P., Liu, Z., Tai, Q., Liu, S., Yan, F.: Efficient semitransparent perovskite solar cells with graphene electrodes. Adv Mater 27, 3632–3638 (2015)

    Article  CAS  Google Scholar 

  78. Lang, F., Gluba, M.A., Albrecht, S., Rappich, J., Korte, L., Rech, B., Nickel, N.H.: Perovskite solar cells with large-area CVD-graphene for tandem solar cells. J Phys Chem Lett 6, 2745–2750 (2015)

    Article  CAS  Google Scholar 

  79. Liu, S., Cao, K., Li, H., Song, J., Han, J., Shen, Y., Wang, M.: Full printable perovskite solar cells based on mesoscopic TiO2/Al2O3/NiO (carbon nanotubes) architecture. Solar Energy 144, 158–165 (2017)

    Article  CAS  Google Scholar 

  80. Aitola, K., Domanski, K., Correa-Baena, J.-P., Sveinbjörnsson, K., Saliba, M., Abate, A., Grätzel, M., Kauppinen, E., Johansson, E.M.J., Tress, W., Hagfeldt, A., Boschloo, G.: High temperature-stable perovskite solar cell based on low-cost carbon nanotube hole contact. Adv. Mater. 29, 1606398 (2017)

    Article  Google Scholar 

  81. Jeon, I., Seo, S., Sato, Y., Delacou, C., Anisimov, A., Suenaga, K., Kauppinen, E.I., Maruyama, S., Matsuo, Y.: Perovskite solar cells using carbon nanotubes both as cathode and as anode. J. Phys. Chem. C 121, 25743–25749 (2017)

    Article  CAS  Google Scholar 

  82. Kim, M., Kim, T.-W., Kim, S.H., Jung, E.H., Park, H.H., Seo, J., Lee, S.-J.: Antireflective, self-cleaning and protective film by continuous sputtering of a plasma polymer on inorganic multilayer for perovskite solar cells application. Sol. Energy Mater. Sol. Cells 191, 55–61 (2019)

    Article  CAS  Google Scholar 

  83. Jung, H.J., Kim, D., Kim, S., Park, J., Dravid, V.P., Shin, B.: Stability of halide perovskite solar cell devices: in situ observation of oxygen diffusion under biasing. Adv Mater 30(1802769), 1–10 (2018)

    Google Scholar 

  84. Lim, J., Kim, M., Park, H.H., Jung, H., Lim, S., Hao, X., Choi, E., Park, S., Lee, M., Liu, Z., Green, M.A., Seo, J., Park, J., Yun, J.S.: Kinetics of light-induced degradation in semi-transparent perovskite solar cells. Solar Energy Mater Solar Cells 219, 110776 (2021)

    Article  CAS  Google Scholar 

  85. Kim, J., Shin, B.: Strategies to reduce the open-circuit voltage deficit in Cu2ZnSn(S, Se)4 thin film solar cells. Electron. Mater. Lett. 13(5), 373–392 (2017)

    Article  Google Scholar 

  86. Hwang, T., Cho, D., Kim, J., Kim, J., Lee, S., Lee, B., Kim, K.H., Hong, S., Kim, C., B, : Park Investigation of chlorine-mediated microstructural evolution of CH3NH3PbI3(Cl) grains for high optoelectronic responses. Nano Energy 25, 91–99 (2016)

    Article  CAS  Google Scholar 

  87. Lee, B., Lee, S., Cho, D., Kim, J., Hwang, T., Kim, K.H., Hong, S., Moon, T., Park, B.: Evaluating the optoelectronic quality of hybrid perovskites by conductive atomic force microscopy with noise spectroscopy. ACS Appl. Mater. Interfaces. 8, 30985–30991 (2016)

    Article  CAS  Google Scholar 

  88. Jeon, N.J., Na, H., Jung, E.H., Yang, T.-Y., Lee, Y.G., Kim, G., Shin, H.-W., Seok, S.I., Lee, J., Seo, J.: A fluorene-terminated hole-transporting material for highly efficient and stable perovskite solar cells. Nat Energy 3, 682–689 (2018)

    Article  CAS  Google Scholar 

  89. Yang, S., Chen, S., Mosconi, E., Fang, Y., Xiao, X., Wang, C., Zhou, Y., Yu, Z., Zhao, J., Gao, Y., De Angelis, F., Huang, J.: Stabilizing halide perovskite surfaces for solar cell operation with wide-bandgap lead oxysalts. Science 365, 473–478 (2019)

    Article  CAS  Google Scholar 

  90. Jeon, N.J., Yang, T.-Y., Park, H.H., Seo, J., Nam, D.Y., Jeong, D., Hong, S., Kim, S.H., Cho, J.M., Jang, J.J., Lee, J.-K.: Thermally activated, light-induced electronspin-resonance spin density reflected by photocurrents in a perovskite solar cell. Appl. Phys. Lett. 114, 013903 (2019)

    Article  Google Scholar 

  91. Duong, T., Mulmudi, H.K., Wu, Y., Fu, X., Shen, H., Peng, J., Wu, N., Nguyen, H.T., Macdonald, D., Lockrey, M., White, T.P., Weber, K., Catchpole, K.: Light and electrically induced phase segregation and its impact on the stability of quadruple cation high bandgap perovskite solar cells. ACS Appl. Mater. Interfaces. 9, 26859–26866 (2017)

    Article  CAS  Google Scholar 

  92. Bischak, C.G., Hetherington, C.L., Wu, H., Aloni, S., Ogletree, D.F., Limmer, D.T., Ginsberg, N.S.: Origin of reversible photoinduced phase separation in hybrid perovskites. Nano Lett. 17, 1028–1033 (2017)

    Article  CAS  Google Scholar 

  93. Barker, A.J., Sadhalana, A., Deschler, F., Gandini, M., Senanayak, S.P., Pearce, P.M., Mosconi, E., Pearson, A.J., Wu, Y., Kandada, A.R.S., Leijtens, T., De Angelis, F., Dutton, S.E., Petrozza, A., Friend, R.H.: Defect-assisted photoinduced halide segregation in mixed-halide perovskite thin films. ACS Energy Lett 2, 1416–1424 (2017)

    Article  CAS  Google Scholar 

  94. Yang, Z., Rajagolpal, A., Jo, S.B., Chueh, C.-C., Williams, S., Huang, C.-C., Katahara, J.K., Hillhouse, H.W., Jen, A.K.-Y.: Stabilized wide bandgap perovskite solar cells by tin substitution. Nano Lett. 16, 7739–7747 (2016)

    Article  CAS  Google Scholar 

  95. Yoon, S.J., Draguta, S., Manser, J.S., Sharia, O., Schneider, W.F., Kuno, M., Kamat, P.V.: Tracking iodide and bromide ion segregation in mixed halide lead perovskites during photoirradiation. ACS Energy Lett 1, 290–296 (2016)

    Article  CAS  Google Scholar 

  96. Hoke, E.T., Slotcavage, D.J., Dohner, E.R., Bowring, A.R., Karunadasa, H.I., McGehee, M.D.: Reversible photo-induced trap formation in mixedhalide hybrid perovskites for photovoltaics. Chem Sci 6, 613 (2015)

    Article  CAS  Google Scholar 

  97. Yin, W.-J., Yan, Y., Wei, S.-H.: Anomalous alloy properties in mixed halide perovskites. J Phys Chem Lett 5, 3625–3631 (2014)

    Article  CAS  Google Scholar 

  98. Correa-Baena, J.-P., Luo, Y., Brenner, T.M., Snaider, J., Sun, S., Li, X., Jensen, M.A., Hartono, N.T.P., Nienhaus, L., Wieghold, S., Poindexter, J.R., Wang, S., Meng, Y.S., Wang, T., Lai, B., Holt, M.V., Cai, Z., Bawendi, M.G., Huang, L., Buonassisi, T., Fenning, D.P.: Homogenized halides and alkali cation segregation in alloyed organic-inorganic perovskites. Science 363, 627–631 (2019)

    Article  CAS  Google Scholar 

  99. Kim, J., Yun, A.J., Gil, B., Lee, Y., Park, B.: Triamine-based aromatic cation as a novel stabilizer for efficient perovskite solar cells. Adv. Func. Mater. 29, 1905190 (2019)

    Article  CAS  Google Scholar 

  100. Kim, J., Hwang, T., Lee, B., Lee, S., Park, K., Park, H.H., Park, B.: An aromatic diamine molecule as the a-site solute for highly durable and efficient perovskite solar cells. Small Methods 3, 1–6 (2018)

    Google Scholar 

  101. Kanda, H., Shibayama, N., Uzum, A., Umeyama, T., Imahori, H., Ibi, K., Ito, S.: Effect of silicon surface for perovskite/silicon tandem solar cells: flat or textured? ACS Appl. Mater. Interfaces. 10, 35016–35024 (2018)

    Article  CAS  Google Scholar 

  102. Lee, B., Shin, B., Park, B.: Uniform Cs2SnI6 thin films for lead-free and stable perovskite optoelectronics via hybrid deposition approaches. Electron. Mater. Lett. 15, 192–200 (2019)

    Article  CAS  Google Scholar 

  103. Zhang, M., Xin, D., Zheng, X., Chen, Q., Zhang, W.-H.: Toward greener solution processing of perovskite solar cells. ACS Sustain Chem Eng 8, 13126–13138 (2020)

    Article  CAS  Google Scholar 

  104. Kim, J., Yun, J.S., Cho, Y., Lee, D.S., Wilkinson, B., Soufiani, A.M., Deng, X., Zheng, J., Shi, A., Lim, S., Chen, S., Hameiri, Z., Zhang, M., Lau, C.F.J., Huang, S., Green, M.A., Ho-Baillie, A.W.Y.: Overcoming the challenges of large-area high-efficiency perovskite solar cells. ACS Energy Lett 2, 1978–1984 (2017)

    Article  CAS  Google Scholar 

Download references

Acknowledgement

This work was supported financially by the Korea Institute of Energy Technology Evaluation and Planning (KETEP) and the Ministry of Trade Industry and Energy (MOTIE), Republic of Korea (No. 20193091010490).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Helen Hejin Park.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, H.H. Transparent Electrode Techniques for Semitransparent and Tandem Perovskite Solar Cells. Electron. Mater. Lett. 17, 18–32 (2021). https://doi.org/10.1007/s13391-020-00259-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13391-020-00259-4

Keywords

Navigation