Skip to main content
Log in

Microwave Characteristics Analysis of Typical Photosensitive Material InP Under Weak Light Irradiation Based on Quasi-Optical Resonator

  • Original Article - Electronics, Magnetics and Photonics
  • Published:
Electronic Materials Letters Aims and scope Submit manuscript

Abstract

In this paper, the microwave characteristics of typical photosensitive material InP under different light irradiation are studied. The measurement sensor is a reflection-type hemispherical quasi-optical resonator with an operating frequency range from 20 to 40 GHz, an operating mode of TEM00q, and a quality factor of 18,000 or more. For the short-time irradiation experiment, the variation of InP microwave characteristics with the irradiation power of 20 mW, 60 mW, 100 mW, and 200 mW, is studied by frequency-domain and time-domain scanning methods, respectively. The measurement results indicate that the microwave characteristics of InP change significantly even under weak light irradiation. Taking 100 mW and 200 mW irradiation power as examples, the long-time irradiation experiment performed on InP lasting 1.5 min is carried out. The measurement result curves clearly show the influence of the thermal and non-thermal effects on the InP microwave characteristics at the instant of the monochrome light source opening and closing and during irradiation. Furthermore, the temperature distribution of InP during 200 mW irradiation is real-time imaged by a thermal infrared imager to verify the existence of thermal effect during irradiation. The measurement results are in good agreement with the theoretical analysis.

Graphic Abstract

The microwave properties of InP under short-time and long-time irradiation are analyzed by frequency-domain and time-domain scanning methods, especially the effects of thermal and non-thermal on microwave properties during long-term irradiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Yao, J.: Microwave photonics. J. Lightwave Technol. 27, 314 (2009)

    Article  CAS  Google Scholar 

  2. Benitez, J., Mora, J.: Low-coherence interferometry using microwave photonics for multilayered samples. J. Lightwave Technol. 36, 1 (2018)

    Article  Google Scholar 

  3. Zhan, S., Jun, W., Zhiyao, J., Difei, S., Ming, L., Ninghua, Z., Wei, L.: Tunable single notch microwave photonic filter based on delay lines. Opt. Commun. 448, 15 (2018)

    Google Scholar 

  4. Lin, T., Zhao, S., Zhu, Z., Li, X., Zheng, Q., Qu, K., Hu, D.: Microwave photonics reconfigurable mixer based on polarization modulator. Opt. Quant. Electron. 50, 1 (2017)

    CAS  Google Scholar 

  5. Thorette, A., Romanelli, M., Vallet, M.: Synchronization of two DFB lasers using frequency-shifted feedback for microwave photonics. IEEE J. Quantum. Elect. 55, 1 (2019)

    Article  Google Scholar 

  6. Sales, S., Xue, W., Mork, J., Gasulla, I.: Slow and fast light effects and their applications to microwave photonics using semiconductor optical amplifiers. IEEE T. Microw. Theory. 58, 3022 (2010)

    Article  Google Scholar 

  7. Fandino, J.S., Munoz, P.: Photonics-based microwave frequency measurement using a double-sideband suppressed-carrier modulation and an InP integrated ring-assisted Mach-Zehnder interferometer filter. Opt. Lett. 38, 4316 (2013)

    Article  Google Scholar 

  8. Baili, G., Alouini, M., Dolfi, D., Bretenaker, F., Sagnes, I., Garnache, A.: Shot-noise-limited operation of a monomode high-cavity-finesse semiconductor laser for microwave photonics applications. Opt. Lett. 32, 650 (2007)

    Article  Google Scholar 

  9. Kamitsuna, H., Shibata, T., Kurishima, K., Ida, M.: Direct optical injection locking of InP/InGaAs HPT oscillator ICs for microwave photonics and 40-Gbit/s-class optoelectronic clock recovery. IEEE T. Microw. Theory. 50, 3002 (2002)

    Article  Google Scholar 

  10. Chang, M.P., Wang, N., Wu, B., Prucnal, P.R.: A simultaneous variable optical weight and delay in a semiconductor optical amplifier for microwave photonics. J. Lightwave. Technol. 33, 2120 (2015)

    Article  Google Scholar 

  11. Hossain, M., Nosaeva, K., Janke, B., Weimann, N., Krozer, V., Heinrich, W.: A G-band high power frequency doubler in transferred-substrate InP HBT technology. IEEE Microw. Wirel. Co. 26, 49 (2016)

    Article  Google Scholar 

  12. Smith, P.M.: Status of InP HEMT technology for microwave receiver applications. IEEE Trans. Microw. Theory. 44, 129 (1996)

    Article  Google Scholar 

  13. Radisic, V., Scott, D.W., Cavus, A., Monier, C.: 220-GHz high-efficiency InP HBT power amplifiers. IEEE Trans. Microw. Theory. 62, 3001 (2014)

    Article  CAS  Google Scholar 

  14. Mun, S.C.L.T., Tan, C.H., Dimler, S.J., Tan, L.J.J., Ng, J.S., Goh, Y.L., David, J.P.R.: A theoretical comparison of the breakdown behavior of In0.52Al0.48As and InP near-infrared single-photon avalanche photodiodes. IEEE J. Quantum. Elect. 45, 566 (2009)

    Article  Google Scholar 

  15. Tosi, A., Calandri, N., Sanzaro, M., Acerbi, F.: Low-noise, low-jitter, high detection efficiency InGaAs/InP single-photon avalanche diode. IEEE J. Sel. Top. Quant. 20, 192 (2014)

    Article  Google Scholar 

  16. Bryantseva, T., Lybchenko, D., Lybchenko, V., Markov, I., Markov, R.: Mass transfer in GaAs surface layers under the action of low-intensity electromagnetic waves. Semiconductors. 48, 184 (2014)

    Article  CAS  Google Scholar 

  17. Ermolovich, I., Milenin, G., Milenin, V., Konakova, R., Redko, R.: Modification of the defect structure in binary semiconductors under the action of microwave radiation. Tech. Phys. 52, 1173 (2007)

    Article  CAS  Google Scholar 

  18. Redko, R.A., Budzulyak, S.I., Vakhnyak, N.D., Demchina, L.A., Korbutyak, D.V., Konakova, R.V., Lotsko, A.P., Okhrimenko, O.B., Berezovskaya, N.I., Bykov, Yu.V., Egorov, S.V., Eremeev, A.G.: Effect of microwave (24 GHz) radiation treatment on impurity photoluminescence of CdTe:Cl single crystals. J. Lumin. 178, 68 (2016)

  19. Zayats, N., Konakova, R., Milenin, V., Milenin, G., Redko, R., Redko, S.: Microwave-radiation-induced structural transformations in homo- and heterogeneous GaAs-based systems. Tech. Phys. 60, 432 (2015)

    Article  CAS  Google Scholar 

  20. Hatke, A.T., Zudov, M.A., Pfeiffer, L.N., West, K.W.: Temperature dependence of microwave photoresistance in 2D electron systems. Phys. Rev. Lett. 102, 066804 (2009)

    Article  CAS  Google Scholar 

  21. Belyaev, A.E., Sachenko, A.V., Boltovets, N.S., Ivanov, V.N., Konakova, R.V., Kudryk, Y.Y., Matveeva, L.A., Milenin, V.V., Novitskii, S.V., Sheremet, V.N.: Effect of microwave irradiation on the resistance of Au-TiBx-Ge-Au-n-n+-n++-GaAs(InP) ohmic contacts. Semiconductors. 46, 541 (2012)

    Article  CAS  Google Scholar 

  22. Antonov, V., Ivanov, S., Tsarev, V., Chupis, V.: Ultrafast photodetectors based on the interaction of microwave radiation and a photoexcited plasma in semiconductors. Tech. Phys. 43, 1358 (1998)

    Article  CAS  Google Scholar 

  23. Drexler, C., BelKov, V.V., Ashkinadze, B., Olbrich, P., Zoth, C., Lechner, V., Terentev, Y.V., Yakovlev, D.R., Karczewski, G., Wojtowicz, T., Schuh, D., Wegscheider, W., Ganichev, S.D.: Spin polarized electric currents in semiconductor heterostructures induced by microwave radiation. Appl. Phys. Lett. 97, 066804 (2010)

    Article  Google Scholar 

  24. Chan, C.H., Ho, C.H., Chen, M.K., Lin, Y.S., Huang, Y.S., Hsu, W.C.: Optical characterization of InAlAs/InGaAs metamorphic high-electron mobility transistor structures with tensile and compressive strain. Thin Solid Films 529, 217 (2013)

    Article  CAS  Google Scholar 

  25. Hacker, J.B., Lee, Y.M., Park, H.J., Rieh, J.S., Kim, M.: A 325 GHz InP HBT differential-mode amplifier. IEEE Microw. Wirel. Co. 21, 264 (2011)

    Article  Google Scholar 

  26. Kim, S., Lee, C.U., Song, M., Kwak, M.H.: Design and characterization for travelling wave electrodes of high-speed Mach-Zehnder electro-optic modulator on an n-doped InP substrate. Microw. Opt. Techn. Let. 60, 1558 (2018)

    Article  Google Scholar 

  27. Shu, G., Luo, Y., Zhang, Q., Su, J., Wang, L., Xu, Y., Wang, S.: Millimeter wave measurement of the low-loss dielectric in vacuum electronic devices with reflection-type hemispherical open resonator. J. Infrared. Millim. Terahertz 36, 556 (2015)

    Article  CAS  Google Scholar 

  28. Ramo, S., Whinnery, J.R., Duzer, T.V.: Fields and Waves in Communication Elecrtronics, 3rd edn. Wiley, New York (1994)

    Google Scholar 

  29. Meng, B., Booske, J., Cooper, R.: A system to measure complex permittivity of low loss ceramics at microwzive frequencies and over large temperature ranges. J. Rev. Sci. Instrum. 66, 1068 (1995)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China under Grant No. 61671123 and No. 61001027 and National Key R&D Program of China under Grant No. 2018YFF01013603.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gaofeng Guo.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Li, E., Yu, C. et al. Microwave Characteristics Analysis of Typical Photosensitive Material InP Under Weak Light Irradiation Based on Quasi-Optical Resonator. Electron. Mater. Lett. 16, 131–139 (2020). https://doi.org/10.1007/s13391-019-00196-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13391-019-00196-x

Keywords

Navigation