Skip to main content
Log in

Conformable, Thin, and Dry Electrode for Electrocardiography Using Composite of Silver Nanowires and Polyvinyl Butyral

  • Original Article - Electronics, Magnetics and Photonics
  • Published:
Electronic Materials Letters Aims and scope Submit manuscript

Abstract

Development of a thin and dry electrode for electrocardiography (ECG) is essential in order to prevent skin irritation, allergic reactions from electrolytic gel, and motion artifacts caused by relative motion between the electrodes and the skin. In this study, we have developed a composite electrode made from Ag nanowires (AgNWs) and polyvinyl butyral (PVB), prepared by inverted layer processing (ILP). The initial composite electrodes were mechanically stable, flexible, and transparent; however, most of the NWs were located beneath the surface of the PVB such that few conductive pathways were exposed and available to contact the skin. In order to resolve this issue, prior to transferring the AgNWs from the temporary glass substrate to the PVB, we irradiated the NWs with intensive pulsed light. This irradiation induced plasmonic heating of the AgNWs, which caused the NWs to sink towards the glass and form a dense layer on the temporary substrate. Subsequent ILP resulted in the fabrication of an AgNWs/PVB composite electrode that demonstrated significant surface coverage of conductive pathways available for stable electrical contact with skin. The resultant composite electrode is an improved ECG electrode that exhibits fewer motion artifacts compared to conventional Ag/AgCl-based wet electrodes since it is both dry and conformable.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Koo, J.H., Jeong, S., Shim, H.J., Son, D., Kim, J., Kim, D.C., Choi, S., Hong, J.I., Kim, D.H.: Wearable electrocardiogram monitor using carbon nanotube electronics and color-tunable organic light-emitting diodes. ACS Nano 11, 10032–10041 (2017)

    Article  Google Scholar 

  2. Sinha, S.K., Noh, Y., Reljin, N., Treich, G.M., Hajeb-Mohammadalipour, S., Guo, Y., Chon, K.H., Sotzing, G.A.: Screen-printed PEDOT:PSS electrodes on commercial finished textiles for electrocardiography. ACS Appl. Mater. Interfaces 9, 37524–37528 (2017)

    Article  Google Scholar 

  3. Choi, S., Lee, H., Ghaffari, R., Hyeon, T., Kim, D.H.: Recent advances in flexible and stretchable bio-electronic devices integrated with nanomaterials. Adv. Mater. 28, 4203–4218 (2016)

    Article  Google Scholar 

  4. Campana, A., Cramer, T., Simon, D.T., Berggren, M., Biscarini, F.: Electrocardiographic recording with conformable organic electrochemical transistor fabricated on resorbable bioscaffold. Adv. Mater. 26, 3874–3878 (2014)

    Article  Google Scholar 

  5. Choi, C., Choi, M.K., Hyeon, T., Kim, D.H.: Nanomaterial-based soft electronics for healthcare applications. ChemNanoMat 2, 1006–1017 (2016)

    Article  Google Scholar 

  6. Kim, T., Park, J., Sohn, J., Cho, D., Jeon, S.: Bioinspired, highly stretchable, and conductive dry adhesives based on 1D–2D hybrid carbon nanocomposites for all-in-one ECG electrodes. ACS Nano 10, 4770–4778 (2016)

    Article  Google Scholar 

  7. Liu, B., Luo, Z., Zhang, W., Tu, Q., Jin, X.: Silver nanowire-composite electrodes for long-term electrocardiogram measurements. Sens. Actuators A Phys. 247, 459–464 (2016)

    Article  Google Scholar 

  8. Takamatsu, S., Lonjaret, T., Crisp, D., Badier, J.M., Malliaras, G.G., Ismailova, E.: Direct patterning of organic conductors on knitted textiles for long-term electrocardiography. Sci. Rep. 5, 15003 (2015)

    Article  Google Scholar 

  9. Paul, G., Torah, R., Beeby, S., Tudor, J.: Novel active electrodes for ECG monitoring on woven textiles fabricated by screen and stencil printing. Sens. Actuators A Phys. 221, 60–66 (2015)

    Article  Google Scholar 

  10. Salvo, P., Raedt, R., Carrette, E., Schaubroeck, D., Vanfleteren, J., Cardon, L.: A 3D printed dry electrode for ECG/EEG recording. Sens. Actuators A Phys. 174, 96–102 (2012)

    Article  Google Scholar 

  11. Lee, S.M., Byeon, J.H., Lee, H.J., Baek, D.H., Lee, K.H., Hong, J.S., Lee, S.H.: Self-adhesive epidermal carbon nanotube electronics for tether-free long-term continuous recording of biosignals. Sci. Rep. 4, 6074 (2014)

    Article  Google Scholar 

  12. Celik, N., Manivannan, N., Strudwick, A., Balachandran, W.: Graphene-enabled electrodes for electrocardiogram monitoring. Nanomaterials 6, 156 (2016)

    Article  Google Scholar 

  13. Bihar, E., Roberts, T., Saadaoui, M., Hervé, T., De Graaf, J.B., Malliaras, G.G.: Inkjet-printed PEDOT:PSS electrodes on paper for electrocardiography. Adv. Healthc. Mater. 6, 1601167 (2017)

    Article  Google Scholar 

  14. Myers, A.C., Huang, H., Zhu, Y.: Wearable silver nanowire dry electrodes for electrophysiological sensing. RSC Adv. 5, 11627–11632 (2015)

    Article  Google Scholar 

  15. Yao, S., Myers, A., Malhotra, A., Lin, F., Bozkurt, A., Muth, J.F., Zhu, Y.: A wearable hydration sensor with conformal nanowire electrodes. Adv. Healthc. Mater. 6, 1601159 (2017)

    Article  Google Scholar 

  16. Kim, J.H., Kim, S.R., Kim, H.J., Kim, Y.C., Park, J.W.: Highly conformable, transparent electrodes for epidermal electronics. Nano Lett. 18, 4531–4540 (2018)

    Article  Google Scholar 

  17. Cui, Z., Han, Y., Huang, Q., Dong, J., Zhu, Y.: Electrohydrodynamic printing of silver nanowires for flexible and stretchable electronics. Nanoscale 10, 6806–6811 (2018)

    Article  Google Scholar 

  18. Lee, E., Kim, I., Liu, H., Cho, G.: Exploration of AgNW/PU nanoweb as ECG textile electrodes and comparison with Ag/AgCl electrodes. Fibers Polym. 18, 1749–1753 (2017)

    Article  Google Scholar 

  19. Kim, D.-H., Yu, K.-C., Kim, Y., Kim, J.-W.: Highly stretchable and mechanically stable transparent electrode based on composite of silver nanowires and polyurethane-urea. ACS Appl. Mater. Interfaces 7, 15214–15222 (2015)

    Article  Google Scholar 

  20. Jun, S., Han, C.J., Kim, Y., Ju, B.-K., Kim, J.-W.: A pressure-induced bending sensitive capacitor based on an elastomer-free, extremely thin transparent conductor. J. Mater. Chem. A. 5, 3221–3229 (2017)

    Article  Google Scholar 

  21. Liang, J., Li, L., Niu, X., Yu, Z., Pei, Q.: Elastomeric polymer light-emitting devices and displays. Nat. Photonics 7, 817–824 (2013)

    Article  Google Scholar 

  22. Kim, Y., Ryu, T.I., Ok, K.-H., Kwak, M.-G., Park, S., Park, N.-G., Han, C.J., Kim, B.S., Ko, M.J., Son, H.J., Kim, J.-W.: Inverted layer-by-layer fabrication of an ultraflexible and transparent Ag nanowire/conductive polymer composite electrode for use in high-performance organic solar cells. Adv. Funct. Mater. 25, 4580–4589 (2015)

    Article  Google Scholar 

  23. Govorov, A.O., Richardson, H.H.: Generating heat with metal nanoparticles. Nano Today 2, 30–38 (2007)

    Article  Google Scholar 

  24. Garnett, E.C., Cai, W., Cha, J.J., Mahmood, F., Connor, S.T., Christoforo, M.G., Cui, Y., McGehee, M.D., Brongersma, M.L.: Self-limited plasmonic welding of silver nanowire junctions. Nat. Mater. 11, 241–249 (2012)

    Article  Google Scholar 

  25. Song, C.H., Han, C.J., Ju, B.K., Kim, J.W.: Photoenhanced patterning of metal nanowire networks for fabrication of ultraflexible transparent devices. ACS Appl. Mater. Interfaces 8, 480–489 (2016)

    Article  Google Scholar 

  26. Shacham-Diamand, Y., Osaka, T., Okinaka, Y., Sugiyama, A., Dubin, V.: 30 years of electroless plating for semiconductor and polymer micro-systems. Microelectron. Eng. 132, 35–45 (2015)

    Article  Google Scholar 

  27. Hwang, B., An, Y., Lee, H., Lee, E., Becker, S., Kim, Y.H., Kim, H.: Highly flexible and transparent Ag nanowire electrode encapsulated with ultra-thin Al2O3: thermal, ambient, and mechanical stabilities. Sci. Rep. 7, 41336 (2017)

    Article  Google Scholar 

  28. Kim, R.H., Kim, H.J., Bae, I., Hwang, S.K., Velusamy, D.B., Cho, S.M., Takaishi, K., Muto, T., Hashizume, D., Uchiyama, M., André, P., Mathevet, F., Heinrich, B., Aoyama, T., Kim, D.E., Lee, H., Ribierre, J.C., Park, C.: Non-volatile organic memory with sub-millimetre bending radius. Nat. Commun. 5, 3583 (2014)

    Article  Google Scholar 

  29. Kim, W.K., Lee, S., Lee, D.H., Park, I.H., Bae, J.S., Lee, T.W., Kim, J.Y., Park, J.H., Cho, Y.C., Cho, C.R., Jeong, S.Y.: Cu mesh for flexible transparent conductive electrodes. Sci. Rep. 5, 10715 (2015)

    Article  Google Scholar 

  30. Hwang, J., Shim, Y., Yoon, S.M., Lee, S.H., Park, S.H.: Influence of polyvinylpyrrolidone (PVP) capping layer on silver nanowire networks: theoretical and experimental studies. RSC Adv. 6, 30972–30977 (2016)

    Article  Google Scholar 

  31. Kim, K.S., Kim, S.O., Han, C.J., Kim, D.U., Kim, J.S., Yu, Y.T., Lee, C.R., Kim, J.W.: Revisiting the thickness reduction approach for near-foldable capacitive touch sensors based on a single layer of Ag nanowire-polymer composite structure. Compos. Sci. Technol. 165, 58–65 (2018)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by a National Research Foundation of Korea (NRF) Grant (Numbers 2015R1A4A1042417, 2018R1D1A1B07047386 and 2016M3A7B4910) funded by the Korean government (MSIP).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jinseok Lee or Jong-Woong Kim.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1872 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Choi, S.B., Oh, M.S., Han, C.J. et al. Conformable, Thin, and Dry Electrode for Electrocardiography Using Composite of Silver Nanowires and Polyvinyl Butyral. Electron. Mater. Lett. 15, 267–277 (2019). https://doi.org/10.1007/s13391-019-00125-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13391-019-00125-y

Keywords

Navigation