Skip to main content
Log in

Study on the impact of silicon doping level on the trench profile using metal-assisted chemical etching

  • Published:
Electronic Materials Letters Aims and scope Submit manuscript

Abstract

Metal-assisted chemical etching (MACE) has been used as a promising alternative method to fabricate micro/nano-structures on silicon substrates inexpensively. In this paper, profiles of deep trenches on silicon substrates, with different doping levels, fabricated by MACE were studied. A layer of interconnected gold islands was first deposited onto the silicon substrate as catalyst. Electrochemical etching was then performed in a hydrofluoric acid (HF) and hydrogen peroxide (H2O2) mixture solution with different HF-to-H2O2 ratio ρ (ρ = [HF]/([HF] + [H2O2])). Vertical deep trenches were fabricated successfully by using this method. It was observed that even under identical experimental condition, sidewalls with various tilting angles and different morphology could still form on silicon substrates with different resistivity. This possibly because with different resistivity silicon substrate, the gradient of holes in it greatly changed, and so did the final morphology. As a result, the tilting angle of etched trench sidewall can be tuned from 6° to 96° using silicon substrates with different resistivity and etchants with different ρ. By applying the angle-tuning technique revealed in this study, high aspect ratio patterns with vertical sidewalls could be fabricated and three-dimensional complex structures could be designed and realized in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Hernandez, D. Lange, T. Trifonov, M. Garín, M. García, A. Rodríguez, and R. Alcubilla, Microelectron. Eng. 87, 1458 (2010).

    Article  Google Scholar 

  2. M. D. Kelzenberg, S. W. Boettcher, J. A. Petykiewicz, D. B. Turner-Evans, M. C. Putnam, E. L. Warren, J. M. Spurgeon, R. M. Briggs, N. S. Lewis, and H. A. Atwater, Nat. Mater. 9, 239 (2010).

    Article  Google Scholar 

  3. K. Q. Peng, X. Wang, L. Li, X. L. Wu, and S. T. Lee, J. Am. Chem. Soc. 132, 6872 (2010).

    Article  Google Scholar 

  4. Y. Cui, Q. Wei, H. Park, and C. M. Lieber, Science 293, 1289 (2001).

    Article  Google Scholar 

  5. B. R. Murthy, J. K. K. Ng, E. S. Selamat, N. Balasubramanian, and W. T. Liu, Biosens. Bioelectron. 24, 723 (2008).

    Article  Google Scholar 

  6. K. Peng, J. Jie, W. Zhang, and S.-T. Lee, Appl. Phys. Lett. 93, 033105 (2008).

    Article  Google Scholar 

  7. A. I. Hochbaum, R. Chen, R. D. Delgado, W. Liang, E. C. Garnett, M. Najarian, A. Majumdar, and P. Yang, Nature 451, 163 (2008).

    Article  Google Scholar 

  8. A. Snigirev, I. Snigireva, M. Grigoriev, V. Yunkin, M. D. Michiel, G. Vaughan, V. Kohn, and S. Kuznetsov, J. Phys.: Conf. Ser. 186, 012072 (2009).

    Google Scholar 

  9. J. Bondur, J. Vac. Sci. Technol. 13, 1023 (1976).

    Article  Google Scholar 

  10. M. Ahn, R. K. Heilmann, and M. L. Schattenburg, J. Vac. Sci. Technol. B 25, 2593 (2007).

    Article  Google Scholar 

  11. V. Lehmann and H. Föll, J. Electrochem. Soc. 137, 653 (1990).

    Article  Google Scholar 

  12. V. Lehmann and U. Grüning, Thin Solid Films 297, 13 (1997).

    Article  Google Scholar 

  13. H. Föll, M. Christophersen, J. Carstensen, and G. Hasse, Mater. Sci. Eng. R 39, 93 (2002).

    Article  Google Scholar 

  14. P. Lianto, S. Yu, J. Wu, C. V. Thompson, and W. K. Choi, Nanoscale 4, 7532 (2012).

    Article  Google Scholar 

  15. L. Li, Y. Liu, X. Zhao, Z. Lin, and C. P. Wong, ACS Appl. Mater. Inter. 6, 575 (2013).

    Article  Google Scholar 

  16. Z. Huang, N. Geyer, P. Werner, J. De Boor, and U. Gösele, Adv. Mater. 23, 285 (2011).

    Article  Google Scholar 

  17. X. Li and P. W. Bohn, Appl. Phys. Lett. 77, 2572 (2000).

    Article  Google Scholar 

  18. M. L. Zhang, K. Q. Peng, X. Fan, J. S. Jie, R. Q. Zhang, S. T. Lee, and N. B. Wong, J. Phys. Chem. C 112, 4444 (2008).

    Article  Google Scholar 

  19. M. Lajvardi, H. Eshghi, M. Izadifard, M. E. Ghazi, and A. Goodarzi, Physica E 75, 136 (2016).

    Article  Google Scholar 

  20. C. Y. Chen, Y. R. Liu, J. C. Tseng, and P. Y. Hsu, Appl. Surf. Sci. 333, 152 (2015).

    Article  Google Scholar 

  21. S. Cruz, A. Hönig-d’Orville, and J. Müller, J. Electrochem. Soc. 152, C418 (2005).

    Article  Google Scholar 

  22. J. Huang, S. Y. Chiam, H. H. Tan, S. Wang, and W. K. Chim, Chem. Mater. 22, 4111 (2010).

    Article  Google Scholar 

  23. Z. Huang, T. Shimizu, S. Senz, Z. Zhang, N. Geyer, and U. Gösele, J. Phys. Chem. C 114, 10683 (2010).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiyu Huang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, Z., Huang, Q., Zhao, C. et al. Study on the impact of silicon doping level on the trench profile using metal-assisted chemical etching. Electron. Mater. Lett. 12, 742–746 (2016). https://doi.org/10.1007/s13391-016-6197-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13391-016-6197-8

Keywords

Navigation