Skip to main content
Log in

Controlled synthesis of CeO2 microstructures from 1D rod-like to 3D lotus-like and their morphology-dependent properties

  • Published:
Electronic Materials Letters Aims and scope Submit manuscript

Abstract

Monodisperse 3D lotus-like CeO2 microstructures have been successfully synthesized via controlling the morphology of CeCO3OH precursors under hydrothermal condition as well as subsequent calcination. The reaction time was systematically investigated. XRD, FT-IR, SEM, TEM, XPS, Raman scattering and Photoluminescence (PL) spectra were employed to characterize the samples. The lotus-like CeO2 hierarchical structures with an average of 4–6 μm are composed of many nanoplates of 100–200 nm in thickness as the petals stacking together to form open flowers and have a fluorite cubic structure. Based on the time-dependent morphology evolution evidences, a nucleation-dissolution-recrystallization mechanism has been proposed to explain the transformation from rod-like structures to lotus-like CeO2 hierarchical structures with the increase of reaction time. It is found that there are Ce3+ ions and oxygen vacancies in surface of samples. The magnetic and photoluminescence measurements indicated that all CeO2 samples exhibit excellent ferromagnetism and optical properties at room temperature, and while increasing the reaction time, the ferromagnetism and optical properties increase more, which can be reasonably explained for the influences of the different morphology of the particles and the concentration of oxygen vacancies and Ce3+ ions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. C. Rao, M. Yang, C. S. Li, H. Z. Dong, S. Fang, and A. M. Zhang, J. Mater. Chem. A 3, 782 (2015).

    Article  Google Scholar 

  2. J. J. Wei, Z. J. Yang, and Y. Z. Yang, Cryst. Eng. Comm. 13, 2418 (2011).

    Article  Google Scholar 

  3. K. Tang, J. C. Zhang, W. Z. Wang, S. P. Wang, J. X. Guo, and Y. Z. Yang, Cryst. Eng. Comm. 17, 2690 (2015).

    Article  Google Scholar 

  4. J. K. H. Hui, P. D. Frischmann, C. Tso, C. A. Michal, and M. J. MacLachlan, Chem.-Eur. J. 16, 2453 (2010).

    Article  Google Scholar 

  5. Y. X. Zhou, Q. Zhang, J. Y. Gong, and S. H. Yu, J. Phys. Chem. C 112, 13383 (2008).

    Article  Google Scholar 

  6. L. Z. Zhang, J. C. Yu, Z. Zheng, and C. W. Leung, Chem. Commun. 21, 2683 (2005).

    Article  Google Scholar 

  7. B. Liu and H. C. Zeng, J. Am. Chem. Soc. 126, 16744 (2004).

    Article  Google Scholar 

  8. L. Y. Chen, Z. D. Zhang, and W. Z. Wang, J. Phys. Chem. C 112, 4117 (2008).

    Article  Google Scholar 

  9. R. R. Cui, W. C. Lu, L. M. Zhang, B. H. Yue, and S. S. Shen, J. Phys. Chem. C 113, 21520 (2009).

    Article  Google Scholar 

  10. J. Zhang, H. Kumagai, K. Yamamura, S. Ohara, S. Takami, A. Morikawa, H. Shinjoh, K. Kaneko, T. Adschiri, and A. Suda, Nano. Lett. 11, 361 (2011).

    Article  Google Scholar 

  11. L. H. Jiang, M. G. Yao, B. Liu, Q. J. Li, R. Liu, Z. Yao, S. C. Lu, W. Cui, X. Hua, B. Zou, T. Cui, and B. B. Liu, Cryst. Eng. Comm. 15, 3739 (2013).

    Article  Google Scholar 

  12. N. Izu, T. Itoh, M. Nishibori, I. Matsubara, and W. Shin, Sens. Actuat. B-Chem. 171, 350 (2012).

    Article  Google Scholar 

  13. Z. Zhan and S. A. Barnett, Science 308, 844 (2005).

    Article  Google Scholar 

  14. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Science 306, 666 (2004).

    Article  Google Scholar 

  15. Q. G. Dai, S. X. Bai, H. Li, W. Liu, X. Y. Wang, and G. Z. Lu, Cryst. Eng. Comm. 16, 9817 (2014).

    Article  Google Scholar 

  16. T. Yu, B. Lim and Y. N. Xia, Angew. Chem. Int. Ed. 49, 4484 (2010).

    Article  Google Scholar 

  17. H. Imagawa and S. H. Sun, J. Phys. Chem. C 116, 2761 (2012).

    Article  Google Scholar 

  18. S. C. Xu, Y. X. Zhang, S. S. Pan, H. L. Ding, and G. H. Li, J. Hazard. Mater. 196, 29 (2011).

    Article  Google Scholar 

  19. R. S. Yuan, X. Z. Fu, X. C. Wang, P. Liu, L. Wu, Y. M. Xu, X. X. Wang, and Z. Y. Wang, Chem. Mater. 18, 4700 (2006).

    Article  Google Scholar 

  20. C. W. Sun, J. Sun, G. L. Xiao, H. R. Zhang, X. P. Qiu, H. Li, and L. Q. Chen, J. Phys. Chem. B 110, 13445 (2006).

    Article  Google Scholar 

  21. R. B. Yu, L. Yan, P. Zheng, J. Chen, and X. R. Xing, J. Phys. Chem. C 112, 19896 (2008).

    Article  Google Scholar 

  22. D. M. Kempaiah, S. Yin, and T. Sato, Cryst. Eng. Comm. 13, 741 (2011).

    Article  Google Scholar 

  23. W. Liu, L. J. Feng, C. Zhang, H. X. Yang, J. X. Guo, X. F. Liu, X. Y. Zhang, and Y. Z. Yang, J. Mater. Chem. A 1, 6942 (2013).

    Article  Google Scholar 

  24. Q. G. Dai, S. X. Bai, H. Li, W. Liu, X. Y. Wang, and G. Z. Lu, Cryst. Eng. Comm. 16, 9817 (2014).

    Article  Google Scholar 

  25. Y. H. Xu and R. X. Li, RSC. Adv. 5, 44828 (2015).

    Article  Google Scholar 

  26. C. R. Li, M. Y. Cui, Q. T. Sun, W. J. Dong, Y. Y. Zheng, K. Tsukamoto, B. Y. Chena, and W. H. Tang, J. Alloy Compd. 504, 498 (2010).

    Article  Google Scholar 

  27. G. F. Wang, Q. Y. Mu, T. Chen, and Y. D Wang, J. Alloy Compd. 493, 202 (2010).

    Article  Google Scholar 

  28. F. M. Meng, C. Zhang, Z. H. Fan, J. F. Gong, A. X. Li, Z. L. Ding, H. B. Tang, M. Zhang, and G. F. Wu, J. Alloy Compd. 647, 1013 (2015).

    Article  Google Scholar 

  29. F. L. Liang, Y. Yu, W. Zhou, X. Y. Xu, and Z. H. Zhu, J. Mater. Chem. A 3, 634 (2015).

    Article  Google Scholar 

  30. L. N. Wang, F. M. Meng, K. K. Li, and F. Lu, Appl. Surf. Sci. 286, 269 (2013).

    Article  Google Scholar 

  31. H. Li, A. Petz, H. Yan, J. C. Nie, and S. Kunsagi-Mate, J. Phys. Chem. C 115, 1480 (2011).

    Article  Google Scholar 

  32. H. R. Tan, J. P. Y. Tan, C. Boothroyd, T. W. Hansen, Y. L. Foo, and M. Lin, J. Phys. Chem. C 116, 242 (2012).

    Article  Google Scholar 

  33. A. C. Cabral, L. S. Cavalcante, R. C. Deus, E. Longo, A. Z. Simoes, and F. Moura, Ceram. Int. 40, 4445 (2014).

    Article  Google Scholar 

  34. X. D. Li, J. G. Li, D. Huo, Z. M. Xiu, and X. D. Sun, J. Phys. Chem. C 113, 1806 (2009).

    Article  Google Scholar 

  35. H. Imagawa, A. Suda, K. Yamamura, and S. H. Sun, J. Phys. Chem. C 115, 1740 (2011).

    Article  Google Scholar 

  36. X. D. Zhou and W. Huebner, Appl. Phys. Lett. 79, 3512 (2001).

    Article  Google Scholar 

  37. I. Kosacki, V. Petrovsky, H. U. Anderson, and P. J. Colomban, J. Am. Ceram. Soc. 85, 2646 (2002).

    Article  Google Scholar 

  38. J. Zdravković, B. Simović, A. Golubović, D. Poleti, I. Veljković, M. Šćepanović, and G. Branković, Ceram. Int. 41, 1970 (2015).

    Article  Google Scholar 

  39. W. H. Weber, K. C. Hass, and J. R. Mabride, Phys. Rev. B 48, 178 (1993).

    Article  Google Scholar 

  40. T. Masui, K. Fujiwara, K. I. Machida, and G. Y. Adachi, Chem. Mater. 9, 2197 (1997).

    Article  Google Scholar 

  41. E. Shoko, M. F. Smith, and R. H. McKenzie, J. Phys: Condens. Mater. 22, 223201 (2010).

    Google Scholar 

  42. D. Jiang, W. Z. Wang, E. Gao, S. M. Sun, and L. Zhang, Chem. Commun. 50, 2005 (2014).

    Article  Google Scholar 

  43. B. Choudhury and A. Choudhury, Mater. Chem. Phys. 131, 666 (2012).

    Article  Google Scholar 

  44. S. Phoka, P. Laokul, E. Swatsitang, V. Promarak, S. Seraphin, and S. Maensiri, Synthesis, Mater. Chem. Phys. 115, 423 (2009).

    Article  Google Scholar 

  45. C. W. Sun, H. Li, and L. Q. Chen, J. Phys. Chem. Solids 68, 1785 (2007).

    Article  Google Scholar 

  46. C. W. Sun, H. Li, H. R. Zhang, Z. X. Wang, and L. Q. Chen, Nanotechnology 16, 1454 (2005).

    Article  Google Scholar 

  47. F. M. Meng, L. N. Wang, and J. B. Cui, J. Alloy Compd. 556, 102 (2013).

    Article  Google Scholar 

  48. F. Lu, F. M. Meng, L. N. Wang, Y. Sang, and J. J. Luo, Micro. Nano. Lett. 7, 624 (2010).

    Article  Google Scholar 

  49. S. Y. Chen, Y. H. Lu, T. W. Huang, D. C. Yan, and C. L. Dong, J. Phys. Chem. C 114, 19576 (2010).

    Article  Google Scholar 

  50. J. H. Chen, Y. J. Lin, H. C. Chang, Y. H. Chen, L. Horng, and C. C. Chang, J. Alloy Compd. 548, 235 (2013).

    Article  Google Scholar 

  51. A. Thurber, K. M. Reddy, V. Shutthanandan, M. H. Engelhard, C. Wang, J. Hays, and A. Punnoose, Phys. Rev. B 76, 165206 (2007).

    Article  Google Scholar 

  52. A. Tiwari, V. M. Bhosle, S. Ramachandran, N. Sudhakar, J. Narayan, S. Budak, and A. Gupta, Appl. Phys. Lett. 88, 142511 (2006).

    Article  Google Scholar 

  53. P. Slusser, D. Kumar, and A. Tiwari, Appl. Phys. Lett. 96, 142506 (2010).

    Article  Google Scholar 

  54. S. Y. Chen, C. H. Tsai, M. Z. Huang, D. C. Yan, T. W. Huang, A. Gloter, C. L. Chen, H. J. Lin, C. T. Chen, and C. L. Dong, J. Phys. Chem. C 116, 8707 (2012).

    Article  Google Scholar 

  55. S. Phokha, E. Swatsitang, and S. Maensiri, Electron. Mater. Lett. 11, 1012 (2015).

    Article  Google Scholar 

  56. M. I. B. Bernardi, A. Mesquita, F. Beron, K. R. Pirota, A. O. D. Zevallos, A. C. Doriguetto, and H. B. D. Carvalho, Phys. Chem. Chem. Phys. 17, 3072 (2015).

    Article  Google Scholar 

  57. L. N. Wang and F. M. Meng, Mater. Res. Bull. 48, 3492 (2013).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fanming Meng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gong, J., Meng, F., Fan, Z. et al. Controlled synthesis of CeO2 microstructures from 1D rod-like to 3D lotus-like and their morphology-dependent properties. Electron. Mater. Lett. 12, 846–855 (2016). https://doi.org/10.1007/s13391-016-6126-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13391-016-6126-x

Keywords

Navigation