Skip to main content
Log in

Structural, electrical, and luminescence characteristics of vacuum-annealed epitaxial (Ba,La)SnO3 thin films

  • Published:
Electronic Materials Letters Aims and scope Submit manuscript

Abstract

The correlation between the structural, electrical, and luminescence behaviors of La-doped BaSnO3 (LBSO) epitaxial films was intensively studied. We found that Sn2+ defects and oxygen vacancies control the electrical properties of epitaxial LBSO films that are grown on (001)-oriented SrTiO3 substrates using pulsed laser deposition. Under optimized deposition condition, the films exhibit room temperature resistivity of 16 mΩ·cm, with a mobility of 1.62 cm2V−1s−1. To further reduce the resistivity, the films were vacuum-annealed at various temperatures in the range from 600℃ to 900℃ and the film annealed at 600℃ exhibited the lowest room temperature resistivity of 5 mΩ·cm with the highest mobility of 3.09 cm2V−1s−1. The decrease of resistivity in the film vacuum-annealed at 600℃ originates from the higher concentration of Sn2+ ions and oxygen vacancies, which was also confirmed from photoluminescence studies, in which emission peaks associated with Sn2+ defects were observed at 710 and 910 nm. Raman analysis revealed the presence of defect states related to octahedral tilting in vacuum-annealed LBSO films. Our studies show that the electrical properties of epitaxial films could be controlled by the Sn2+ defects generated with oxygen vacancies during the vacuum-annealing of the films.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. H. Haertling, J. Am. Ceram. Soc. 82, 797 (1999).

    Article  Google Scholar 

  2. A. Okos, C. Colin, C. Darie, O. Raita, P. Bordet, and A. Pop, J. Alloys Compd. 602, 265 (2014).

    Article  Google Scholar 

  3. L. J. Wei, J. X. Guo, D. Y. Ge, X. H. Dai, L. Guan, Y. L. Wang, and B. T. Liu, J. Alloys Compd. 559, 11 (2013).

    Article  Google Scholar 

  4. R. Ubic, K. Tolman, K. Chan, N. Lundy, S. Letourneau, and W. M. Kriven, J. Alloys Compd. 575, 239 (2013).

    Article  Google Scholar 

  5. R. Ran, X. Wu, D. Weng, and J. Fan, J. Alloys Compd. 577, 288 (2013).

    Article  Google Scholar 

  6. A. Chroneos, R. V. Vovk, I. L. Goulatis, and L. I. Goulatis, J. Alloys Compd. 494, 190 (2010).

    Article  Google Scholar 

  7. W.-H. Kim and J. Son, Electron. Mater. Lett. 10, 107 (2014).

    Article  Google Scholar 

  8. C. Seshendra-Reddy, A. Sivasankar-Reddy, and P. Sreedhara-Reddy, Electron. Mater. Lett. 10, 159 (2014).

    Article  Google Scholar 

  9. S.-H. Lee, S.-D. Baek, H.-J. Kim, S.-G. Lee, and Y.-H. Lee, Electron. Mater. Lett. 8, 147 (2012).

    Article  Google Scholar 

  10. T. Sreesattabud, B. Gibbons, A. Watcharapasorn, and S. Jiansirisomboon, Electron. Mater. Lett. 9, 409 (2013).

    Article  Google Scholar 

  11. H. Mizoguchi, P. M. Woodward, C. H. Park, and D. A. Keszler, J. Am. Chem. Soc. 126, 9796 (2004).

    Article  Google Scholar 

  12. H. Mizoguchi, H. W. Eng, and P. M. Woodward, Inorg. Chem. 43, 1667 (2004).

    Article  Google Scholar 

  13. H. J. Kim, U. Kim, H. M. Kim, T. H. Kim, H. S. Mun, B.-G. Jeon, K. T. Hong, W.-J. Lee, C. Ju, K. H. Kim, and K. Char, Appl. Phys. Exp. 5, 061102 (2012).

    Article  Google Scholar 

  14. H. J. Kim, U. Kim, T. H. Kim, J. Kim, H. M. Kim, B.-G. Jeon, W.-J. Lee, H. S. Mun, K. T. Hong, J. Yu, K. Char, and K. H. Kim, Phys. Rev. B 86, 165205 (2012).

    Article  Google Scholar 

  15. Q. Liu, J. Liu, B. Li, H. Li, G. Zhu, K. Dai, Z. Liu, P. Zhang, and J. Dai, Appl. Phys. Lett. 101, 241901 (2012).

    Article  Google Scholar 

  16. S. Sallis, D. O. Scanlon, S. C. Chae, N. F. Quackenbush, D. A. Fischer, J. C. Woicik, J. H. Guo, S. W. Cheong, and L. F. J. Piper, Appl. Phys. Lett. 103, 042105 (2013).

    Article  Google Scholar 

  17. B. Hadjarab, A. Bouguelia, and M. Trari, J. Phys. D: Appl. Phys. 40, 5833 (2007).

    Article  Google Scholar 

  18. H. F. Wang, Q. Z. Liu, F. Chen, G. Y. Gao, W. Wu, and X. H. Chen, J. Appl. Phys. 101, 106105 (2007).

    Article  Google Scholar 

  19. K. Balamurugan, N. Harish-Kumar, B. Ramachandran, M. S. Ramachandra-Rao, J. Arout-Chelvane, and P. N. Santhosh, Solid State Commun. 149, 884 (2009).

    Article  Google Scholar 

  20. E. Moreira, J. M. Henriques, D. L. Azevedo, E. W. S. Caetano, V. N. Freire, and E. L. Albuquerque, J. Solid State Chem. 184, 921 (2011).

    Article  Google Scholar 

  21. S. Prabhakar, J. B. Benjamin, C. P. Sebastian, S. Prakash, S. Sindhu, K. Devendra, and P. Om, Jap. J. Appl. Phys. 47, 3540 (2008).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ji Young Jo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anoop, G., Park, E.Y., Lee, S. et al. Structural, electrical, and luminescence characteristics of vacuum-annealed epitaxial (Ba,La)SnO3 thin films. Electron. Mater. Lett. 11, 565–571 (2015). https://doi.org/10.1007/s13391-015-4436-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13391-015-4436-z

Keywords

Navigation