Skip to main content
Log in

Photoluminescence study of chemical bath deposited ZnIn2Se4 thin films

  • Published:
Electronic Materials Letters Aims and scope Submit manuscript

Abstract

Thin films of ZnIn2Se4 (ZIS) have been prepared by chemical bath deposition (CBD) using a novel and water soluble Na2SeO3 as a source of selenium ion for the first time. The deposition of the films was carried out at various pH values in the range of 6–11, keeping all other bath parameters at optimised values. EDAX analysis revealed that all the grown layers were selenium deficient with trace amounts of oxygen and chlorine incorporation. FTIR spectral measurements revealed the associated symmetric and asymmetric stretching modes of bridged oxygen atoms on the surface of the films. The room temperature photoluminescence properties of these samples at different pH values are studied in detail. Further, Gaussian curve fitting was employed to deconvolute the PL spectra and the change in intensities of these peaks with respective to pH values was addressed and correlated to the role of native defects that were incorporated while deposition. The results indicate that the variation of solution pH had a noticeable effect on the photoluminescence ZIS films.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. B. Kale and C. D. Lokhande, Appl. Surf. Sci. 252, 929 (2005).

    Article  Google Scholar 

  2. S. M. Pawar, B. S. Pawar, J. H. Kim, O. Joo, and C. D. Lokhande, Curr. Appl. Phys. 11, 117 (2011).

    Article  Google Scholar 

  3. Z. Wen-Hua, S. Jian-Lin, C. Hang-Rong, H. Zi-Le, and Y. Dong-Sheng, Chem. Mater. 13, 648 (2001).

    Article  Google Scholar 

  4. R. N. Bhargava, D. Gallagher, X. Hong, and A. Nurmikko, Phys. Rev. Lett. 72, 416 (1994).

    Article  Google Scholar 

  5. S. B. Mirov, V. V. Fedorov, K. Graham, I. S. Moskalev, V. V. Badikov, and V. Panyutin, Opt. Lett. 27, 909 (2002).

    Article  Google Scholar 

  6. N. Kouklin, L. Menon, A. Z. Wong, D. W. Thompson, J. A. Woollam, and P. F. Williams, Appl. Phys. Lett. 79, 4423 (2001).

    Article  Google Scholar 

  7. S. Sgariazzo and A. Serpi, Phys. Rev. B 41, 7718 (1990).

    Article  Google Scholar 

  8. E. Fortin and F. Raga, Solid State Commun. 14, 847 (1974).

    Article  Google Scholar 

  9. E. Nowak, H. Neumann, B. Schumannm, and B. Steiner, Phys. Stat. Sol. A, 133, K13 (1992).

    Article  Google Scholar 

  10. G. Doll, A. Anghel, J. R. Baummann, E. Bucher, A. P. Ramirez, and K. J. Range, Phys. Stat. Sol. A, 126, 237 (1991).

    Article  Google Scholar 

  11. D. Hariskos, S. Spiering, and M. Powalla, Thin Solid Films 480–481, 99 (2005).

    Article  Google Scholar 

  12. P. Babu, K. T. Ramakrishna Reddy, and R. W. Miles, Energy Procedia 10, 177 (2011).

    Article  Google Scholar 

  13. R. Kumaresan, M. Ichimura, and E. Arai, Thin Solid Films 414, 25 (2002).

    Article  Google Scholar 

  14. M. Ichimura, K. Takeuchi, A. Nakamura, and E. Arai, Thin Solid Films 384, 157 (2001).

    Article  Google Scholar 

  15. B. Mokili, Y. Charreire, R. Cortes, and D. Lincot, Thin Solid Films 288, 21 (1996).

    Article  Google Scholar 

  16. G. Alberti, E. Torracca, and A. Conte, J. Inorg Nucl. Chem. 28, 607 (1966).

    Article  Google Scholar 

  17. Innocenzi, J. Non-Cryst. Solids 316, 309 (2003).

    Article  Google Scholar 

  18. A. Chatterjee, A. Priyam, S. C. Bhattacharya, and A. Saha, J. Lumin. 126, 764 (2007).

    Article  Google Scholar 

  19. J. Zhuang, X. Zhang, G. Wang, D. Li, W. Yang, and T. Li, J. Mater. Chem. 13, 1853 (2003).

    Article  Google Scholar 

  20. X. Sun, J. Liu, L. C. Kimerling, and J. Michel, Appl. Phys. Lett. 95, 011911 (2009).

    Article  Google Scholar 

  21. T. H. Cheng, K. L. Peng, C. Y. Ko, C. Y. Chen, H. S. Lan, Y. R. Wu, C. W. Liu, and H. H. Tseng, Appl. Phys. Lett. 96, 211108 (2010).

    Article  Google Scholar 

  22. L. Yi, Y. Hou, H. Zhao, D. He, Z. Xu, Y. Wang, and X. Xu, Displays 21, 147 (2000).

    Article  Google Scholar 

  23. T. H. Gfroerer, in: R. A. Mayers (Ed.), Encyclopedia of Analytical Chemistry, p. 9209, John Wiley & Sons Ltd, Chichester (2000).

    Google Scholar 

  24. G. Patwari, B. J. Bodo, R. Singha, and P. K. Kalita, Res. J. Chem. Sci. 3, 45 (2013).

    Google Scholar 

  25. Y. J. Zeng, Z. Z. Ye, W. Z. Xu, J. G. Lu, H. P. He, L. P. Zhu, B. H. Zhao, Y. Che, and S. B. Zhang, Appl. Phys. Lett. 88, 262103 (2006).

    Article  Google Scholar 

  26. Y. G. Wang, S. P. Lau, H. W. Lee, S. F. Yu, B. K. Tay, X. H. Zhang, and H. H. Hang, J. Appl. Phys. 94, 354 (2003).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pejjai Babu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Babu, P., Reddy, M.R.V. & Reddy, K.T.R. Photoluminescence study of chemical bath deposited ZnIn2Se4 thin films. Electron. Mater. Lett. 10, 731–736 (2014). https://doi.org/10.1007/s13391-013-3207-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13391-013-3207-y

Keywords

Navigation