Skip to main content
Log in

Improved differential fault attack on MICKEY 2.0

  • Regular Paper
  • Published:
Journal of Cryptographic Engineering Aims and scope Submit manuscript

Abstract

In this paper we describe several ideas related to differential fault attack (DFA) on MICKEY 2.0, a stream cipher from eStream hardware profile. Using the standard assumptions for fault attacks, we first show that if the adversary can induce random single bit faults in the internal state of the cipher, then by injecting around \(2^{16.7}\) faults and performing \(2^{32.5}\) computations on an average, it is possible to recover the entire internal state of MICKEY at the beginning of the key-stream generation phase. We further consider the scenario where the fault may affect more than one (at most three) neighboring bits and in that case we require around \(2^{18.4}\) faults on an average to mount the DFA. We further show that if the attacker can solve multivariate equations (say, using SAT solvers) then the attack can be carried out using around \(2^{14.7}\) faults in the single-bit fault model and \(2^{16.06}\) faults for the multiple-bit scenario

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. We would again like to point out that our actual attack does not need precise fault injection at all locations of \(R\), \(S\). This will be explained in the next sub-section.

References

  1. Babbage, S, Dodd, M.: The stream cipher MICKEY 2.0. ECRYPT Stream Cipher Project Report. http://www.ecrypt.eu.org/stream/p3ciphers/mickey/mickey_p3. Accessed 23 July 2014

  2. Babbage, S., Dodd, M.: The stream cipher MICKEY-128 2.0. ECRYPT Stream Cipher Project Report. http://www.ecrypt.eu.org/stream/p3ciphers/mickey/mickey128_p3. Accessed 23 July 2014

  3. Banik, S., Maitra, S.: A differential fault attack on MICKEY 2.0. In: CHES 2013, LNCS, Vol. 8086, pp. 215–232 (2013)

  4. Banik, S., Maitra, S., Sarkar, S.: A differential fault attack on the grain family of stream ciphers. In: CHES 2012, LNCS, vol. 7428, pp. 122–139 (2012)

  5. Banik, S., Maitra, S., Sarkar, S. A differential fault attack on the grain family under reasonable assumptions. In: INDOCRYPT 2012, LNCS, vol. 7668, pp. 191–208 (2012)

  6. Barenghi, A., Breveglieri, L., Koren, I., Naccache, D.: Fault injection attacks on cryptographic devices: theory, practice, and countermeasures. Proc. IEEE 100(11), 3056–3076 (2012)

    Article  Google Scholar 

  7. Berzati, A., Canovas, C., Castagnos, G., Debraize, B., Goubin, L., Gouget, A., Paillier, P., Salgado, S.: Fault analysis of Grain-128. In: IEEE International Workshop on Hardware-Oriented Security and Trust, pp. 7–14 (2009)

  8. Biham, E., Shamir, A.: Differential fault analysis of secret key cryptosystems. In: CRYPTO 1997, LNCS, vol. 1294, pp. 513–525 (1997)

  9. Blömer, J., Seifert, J.-P.: Fault based cryptanalysis of the advanced encryption standard (AES). In: Financial Cryptography 2003, LNCS, vol. 2742, pp. 162–181 (2003)

  10. Boneh, D., DeMillo, R.A., Lipton, R.J.: On the importance of checking cryptographic protocols for faults. In: EUROCRYPT 1997, LNCS, vol. 1233, pp. 37–51 (1997)

  11. Cid, C., Robshaw, M. (editors), Babbage, S., Borghoff, J., Velichkov, V. (Contributors): The eSTREAM Portfolio in 2012, 16 January 2012, version 1.0. http://www.ecrypt.eu.org/documents/D.SYM.10-v1 (2012)

  12. Erdős, P., Rényi, A.: On a classical problem of probability theory. Magyar Tudományos Akadémia Matematikai Kutató Intézetének Közleményei, vol. 6, pp. 215–220, MR 0150807, 1961. http://www.renyi.hu/p_erdos/1961-09 (1961)

  13. Gierlichs, B., Batina, L., Clavier, C., Eisenbarth, T., Gouget, A., Handschuh, H., Kasper, T., Lemke-Rust, K., Mangard, S., Moradi, A., Oswald, E.: Susceptibility of eSTREAM candidates towards side channel analysis. In: Proceedings of SASC 2008. http://www.ecrypt.eu.org/stvl/sasc2008/ (2008)

  14. Hoch, J.J., Shamir, A.: Fault analysis of stream ciphers. In: CHES 2004, LNCS, vol. 3156, pp. 1–20 (2004)

  15. Hojsík, M., Rudolf, B.: Differential fault analysis of Trivium. In: FSE 2008, LNCS, vol. 5086, pp. 158–172 (2008)

  16. Hojsík, M., Rudolf, B.: Floating fault analysis of Trivium. In: INDOCRYPT 2008, LNCS, vol. 5365, pp. 239–250 (2008)

  17. Hong, J., Kim, W.: TMD-Tradeoff and state entropy loss considerations of stream cipher MICKEY. In: INDOCRYPT 2005, LNCS, vol. 3797, pp. 169–182 (2005)

  18. Karmakar, S., Roy Chowdhury, D.; Fault analysis of Grain-128 by targeting NFSR. In: AFRICACRYPT 2011, LNCS, vol. 6737, pp. 298–315 (2011)

  19. Mohamed, M.S.E., Bulygin, S., Buchmann, J.: Improved differential fault analysis of Trivium. In: COSADE 2011, Darmstadt, Germany (2011)

  20. Piret, G., Quisquater, J.-J.: A differential fault attack technique against SPN structures, with application to the AES and KHAZAD. In: CHES 2003, LNCS, vol. 2779, pp. 77–88 (2003)

  21. Sarkar, S., Banik, S., Maitra, S.: Differential Fault Attack Against Grain Family with Very Few Faults and Minimal Assumptions. IACR eprint archive, 2013:494. http://eprint.iacr.org/2013/494

  22. Skorobogatov, S.P.: Optically enhanced position-locked power analysis. In: CHES 2006, LNCS, vol. 4249, pp. 61–75 (2006)

  23. Skorobogatov, S.P., Anderson, R.J.: Optical fault induction attacks. In: CHES 2002, LNCS, vol. 2523, pp. 2–12 (2002)

  24. Soos, M.: CryptoMiniSat-2.9.5. http://www.msoos.org/cryptominisat2/. Accessed 23 July 2014

  25. Stein, W.: Sage Mathematics Software. Free Software Foundation Inc, 2009. http://www.sagemath.org (Open source project initiated by W. Stein and contributed by many)

Download references

Acknowledgments

The authors like to acknowledge the anonymous reviewers for their valuable comments that improved the editorial as well as technical quality of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Subhadeep Banik.

Additional information

This is a substantially revised and extended version of the paper “A Differential Fault Attack on MICKEY 2.0” [3] by S. Banik and S. Maitra that has been presented in Workshop on Cryptographic Hardware and Embedded Systems 2013 (CHES 2013), Santa Barbara, California, USA during August 20–23, 2013 and published in LNCS, Vol. 8086, pp. 215–232. Section 5 is an addition over the conference version showing further improvement.

Appendices

Appendix A: Proofs for Theorem 1B-F

  1. B.

    Since \(\theta _1\) is a function of \(r_0,r_{67},s_{34},r_{99},s_{99}\) only, for any \(\phi \in [1,99]{\setminus } \{67,99\}\) we have

    $$\begin{aligned} \theta _1(R_{t,\Delta r_\phi }(t), S_{t,\Delta r_\phi }(t)) = \theta _1(R_t,S_t). \end{aligned}$$

    Therefore \(z_{t+1} + z_{t+1,\Delta r_\phi }(t)\) equals

    $$\begin{aligned}&\theta _1(R_t,S_t)+ \theta _1(R_{t,\Delta r_\phi }(t), S_{t,\Delta r_\phi }(t))\\&\quad = 0, \ \forall \phi \in [1,99]{\setminus }\{67,99\}, \ \forall R_t,S_t \in \{0,1\}^{100}. \end{aligned}$$

    So, \(\Psi _{r_\phi }^1[1]=1\) for all \(\phi \in [1,99]{\setminus }\{67,99\}\).

  2. C.

    We have \(z_{t+1} + z_{t+1,\Delta r_{99}}(t)\) equals

    $$\begin{aligned}&\theta _1(R_t,S_t)+ \theta _1(R_{t,\Delta r_{99}}(t), S_{t,\Delta r_{99}}(t))\\&\quad = (r_0^t \cdot r_{67}^t + r_0^t \cdot s_{34}^t + r_{99}^t + s_{99}^t) \\&\quad +\,(r_0^t \cdot r_{67}^t + r_0^t \cdot s_{34}^t + 1+ r_{99}^t + s_{99}^t)\\&\quad = 1, \ \forall R_t,S_t \in \{0,1\}^{100}. \end{aligned}$$

    So, \(\Psi _{r_{99}}^2[1]=1\). Also \( z_{t+1} + z_{t+1,\Delta r_{67}}(t) \) equals

    $$\begin{aligned}&\theta _1(R_t,S_t)+ \theta _1(R_{t,\Delta r_{67}}(t), S_{t,\Delta r_{67}}(t))\\&\quad = (r_0^t \cdot r_{67}^t + r_0^t \cdot s_{34}^t + r_{99}^t + s_{99}^t)\\&\quad +\,(r_0^t \cdot (1+r_{67}^t) + r_0^t \cdot s_{34}^t + r_{99}^t + s_{99}^t)\\&\quad = r_0^t \ne 0 \text{ or } 1, \ \forall R_t,S_t \in \{0,1\}^{100}. \end{aligned}$$

    So, \(\Psi _{r_{67}}^2[1]=0\).

  3. D.

    We have

    $$\begin{aligned} z_t + z_{t,\Delta s_0}(t)&= \theta _0(R_t,S_t)+ \theta _0(R_{t,\Delta s_0}(t), S_{t,\Delta s_0}(t))\\&= (r_0^t+s_0^t)+(r_0^t+1+s_0^t) \\&= ~1, \ \forall R_t,S_t \in \{0,1\}^{100}. \end{aligned}$$

    So, \(\Psi _{s_0}^2[0]=1\). Also \(\theta _0\) is not a function of any \(r_i,s_i\) for \(i \in [1,99]\) and so

    $$\begin{aligned} \theta _0(R_{t,\Delta s_\phi }(t), S_{t,\Delta s_\phi }(t)) = \theta _0(R_t,S_t) \end{aligned}$$

    for all \(\phi \in [1,99]\) and so we have

    $$\begin{aligned} z_t + z_{t,\Delta s_\phi }(t)&= \theta _0(R_t,S_t)+ \theta _0(R_{t,\Delta s_\phi }(t), S_{t,\Delta s_\phi }(t))\\&= 0 , \ \forall \phi \in [1,99], \ \forall R_t,S_t \in \{0,1\}^{100}. \end{aligned}$$

    So, \(\Psi _{s_\phi }^1[0]=1\) for all \(\phi \in [1,99]\).

  4. E.

    Since \(\theta _1\) is a function of \(r_0,r_{67},s_{34},r_{99},s_{99}\) only, for any \(\phi \in [1,99]{\setminus } \{34,99\}\) we have

    $$\begin{aligned}\theta _1(R_{t,\Delta s_\phi }(t), S_{t,\Delta s_\phi }(t)) = \theta _1(R_t,S_t). \end{aligned}$$

    Therefore \(z_{t+1} + z_{t+1,\Delta s_\phi }(t)\) equals

    $$\begin{aligned}&\theta _1(R_t,S_t)+ \theta _1(R_{t,\Delta s_\phi }(t), S_{t,\Delta s_\phi }(t))\\&\quad = 0, \ \forall \phi \in [1,99]{\setminus }\{34,99\}, \ \forall R_t,S_t \in \{0,1\}^{100}. \end{aligned}$$

    So, \(\Psi _{s_\phi }^1[1]=1\) for all \(\phi \in [1,99]{\setminus }\{34,99\}\).

  5. F.

    We have \(z_{t+1} + z_{t+1,\Delta s_{99}}(t)\) equals

    $$\begin{aligned}&\theta _1(R_t,S_t)+ \theta _1(R_{t,\Delta s_{99}}(t), S_{t,\Delta s_{99}}(t))\\&\quad = (r_0^t \cdot r_{67}^t + r_0^t \cdot s_{34}^t + r_{99}^t + s_{99}^t)\\&\quad \quad +\,(r_0^t \cdot r_{67}^t + r_0^t \cdot s_{34}^t + r_{99}^t + 1+s_{99}^t)\\&\quad = 1, \ \forall R_t,S_t \in \{0,1\}^{100}. \end{aligned}$$

    So, \(\Psi _{s_{99}}^2[1]=1\). Also \( z_{t+1} + z_{t+1,\Delta s_{34}}(t)\) equals

    $$\begin{aligned}&\theta _1(R_t,S_t)+ \theta _1(R_{t,\Delta s_{34}}(t), S_{t,\Delta s_{34}}(t))\\&\quad =(r_0^t \cdot r_{67}^t + r_0^t \cdot s_{34}^t + r_{99}^t + s_{99}^t) \\&\quad \quad +\, (r_0^t \cdot r_{67}^t + r_0^t \cdot (1+s_{34}^t) + r_{99}^t + s_{99}^t)\\&\quad =r_0^t \ne 0 \text{ or } 1, \ \forall R_t,S_t \in \{0,1\}^{100}. \end{aligned}$$

    So, \(\Psi _{s_{34}}^2[1]=0\).

Appendix B: 187.25 faults are sufficient to deduce \(r_0^t=1\) and find \({ CR}^t\)

From Sect. 5.2, we know that we have a total of 297 different faulty streams. To deduce that \(r_0^t=1\) and find \(CR^t\), by injecting random faults, we want to obtain 4 different streams out of a set of 9 specific streams and 1 out of a set of 3 other streams. To find the expected number of faults to achieve this target, we will use the following proposition.

Proposition 7

Consider five real numbers \(a_1, \ldots , a_5\) in \((0,1)\). Then, we have the following identities

  1. 1.

    \(\displaystyle \sum _{r_1=0}^{\infty } \cdots \sum _{r_5=0}^{\infty } ~\left[ \prod _{i=1}^5 a_i^{r_i}\right] = \prod _{i=1}^5 \frac{1}{ (1-a_i)}\)

  2. 2.

    \(\displaystyle \sum _{\begin{array}{c} r_1=0\\ \vdots \\ r_5=0 \end{array}}^{\infty } ~\left[ \sum _{i=1}^5 r_i \cdot \prod _{i=1}^5 a_i^{r_i}\right] =\sum _{i=1}^5 \frac{a_i}{(1-a_i)^2} \prod _{\begin{array}{c} j=1\\ j \ne i \end{array}}^5 \frac{1}{ (1-a_j)}\)

Suppose, we first obtain the 4 streams of the set of 9 in \(r_1+1, r_1+r_2+2, r_1+r_2+r_3+3\) and \(r_1+r_2+r_3+r_4+4\) attempts respectively. Thereafter, we obtain the remaining streams from the set of 3 after another \(r_5+1\) trials, i.e., we require \(r_1+r_2+r_3+r_4+r_5+5\) faults in total. We call this event \(\mathcal {E}_{r_1,\ldots , r_5}\). Then \(\mathsf{Pr}(\mathcal {E}_{r_1,\ldots , r_5})=\)

$$\begin{aligned}&\!a_1^{r_1} \frac{9}{297} \cdot a_2^{r_2} \cdot \frac{8}{297} \cdot a_3^{r_3} \cdot \frac{7}{297} \cdot a_4^{r_4} \cdot \frac{6}{297} \cdot a_5^{r_5} \cdot \frac{3}{297}\\&~=a_1^{r_1} a_2^{r_2} a_3^{r_3} a_4^{r_4} a_5^{r_5} \cdot \frac{9{,}072}{297^5}, \end{aligned}$$

where \(a_1= \frac{285}{297},a_2=\frac{286}{297}, a_3=\frac{287}{297}, a_4=\frac{288}{297}, a_5=\frac{294}{297}\). Here \(a_i\)’s denote the failure probabilities, i.e., \(a_i\) denotes the probability that, after obtaining \(i-1\) required streams, a random fault produces no stream of interest.

We may also fulfill our target by some other “ordering” of events. For example, we first obtain 3 streams from the set of 9, then the single stream from the other set of 3 and finally the remaining stream from the first set. There are 5 orderings in total. Denote by \(b_i,c_i,d_i,e_i\) the failure probabilities, in each of the other orderings.

It is easy to see that, \(b_1= c_1= d_1=e_1=a_1, \ b_2=c_2=d_2=a_2, b_3=c_3=a_3, \ b_4=a_4, \ b_5=c_5= d_5= e_5 = \frac{291}{297}, \ c_4=d_4=e_4=\frac{290}{297}, \ d_3= e_3= \frac{289}{297}, \ e_2=\frac{288}{297}.\)

Considering all cases, the required expected value is

$$\begin{aligned} E = \displaystyle \sum _{\begin{array}{c} r_1=0\\ \cdot \\ \cdot \\ r_5=0 \end{array}}^{\infty } \left( 5+\sum _{i=0}^5 r_i\right) \bigg (\prod _{i=1}^5 a_i^{r_i} +\cdots + \prod _{i=1}^5 e_i^{r_i} \bigg )\cdot \frac{9072}{297^5} \end{aligned}$$

Now using Proposition 7, we get \(E= 187.25\).

Appendix C: The functions \(\rho _i\) \(\forall i \in [0,99]\)

\( i \)

\( \rho _i \)

\( 0 \)

\( r_{0}\cdot r_{67} + r_{0}\cdot s_{34} + r_{99} \)

\( 1 \)

\( r_{0} + r_{1}\cdot r_{67} + r_{1}\cdot s_{34} + r_{99} \)

\( 2 \)

\( r_{1} + r_{2}\cdot r_{67} + r_{2}\cdot s_{34} \)

\( 3 \)

\( r_{2} + r_{3}\cdot r_{67} + r_{3}\cdot s_{34} + r_{99} \)

\( 4 \)

\( r_{3} + r_{4}\cdot r_{67} + r_{4}\cdot s_{34} + r_{99} \)

\( 5 \)

\( r_{4} + r_{5}\cdot r_{67} + r_{5}\cdot s_{34} + r_{99} \)

\( 6 \)

\( r_{5} + r_{6}\cdot r_{67} + r_{6}\cdot s_{34} + r_{99} \)

\( 7 \)

\( r_{6} + r_{7}\cdot r_{67} + r_{7}\cdot s_{34} \)

\( 8 \)

\( r_{7} + r_{8}\cdot r_{67} + r_{8}\cdot s_{34} \)

\( 9 \)

\( r_{8} + r_{9}\cdot r_{67} + r_{9}\cdot s_{34} + r_{99} \)

\( 10 \)

\( r_{9} + r_{10}\cdot r_{67} + r_{10}\cdot s_{34} \)

\( 11 \)

\( r_{10} + r_{11}\cdot r_{67} + r_{11}\cdot s_{34} \)

\( 12 \)

\( r_{11} + r_{12}\cdot r_{67} + r_{12}\cdot s_{34} + r_{99} \)

\( 13 \)

\( r_{12} + r_{13}\cdot r_{67} + r_{13}\cdot s_{34} + r_{99} \)

\( 14 \)

\( r_{13} + r_{14}\cdot r_{67} + r_{14}\cdot s_{34} \)

\( 15 \)

\( r_{14} + r_{15}\cdot r_{67} + r_{15}\cdot s_{34} \)

\( 16 \)

\( r_{15} + r_{16}\cdot r_{67} + r_{16}\cdot s_{34} + r_{99} \)

\( 17 \)

\( r_{16} + r_{17}\cdot r_{67} + r_{17}\cdot s_{34} \)

\( 18 \)

\( r_{17} + r_{18}\cdot r_{67} + r_{18}\cdot s_{34} \)

\( 19 \)

\( r_{18} + r_{19}\cdot r_{67} + r_{19}\cdot s_{34} + r_{99} \)

\( 20 \)

\( r_{19} + r_{20}\cdot r_{67} + r_{20}\cdot s_{34} + r_{99} \)

\( 21 \)

\( r_{20} + r_{21}\cdot r_{67} + r_{21}\cdot s_{34} + r_{99} \)

\( 22 \)

\( r_{21} + r_{22}\cdot r_{67} + r_{22}\cdot s_{34} + r_{99} \)

\(23 \)

\( r_{22} + r_{23}\cdot r_{67} + r_{23}\cdot s_{34} \)

\( 24 \)

\( r_{23} + r_{24}\cdot r_{67} + r_{24}\cdot s_{34} \)

\( 25 \)

\( r_{24} + r_{25}\cdot r_{67} + r_{25}\cdot s_{34} + r_{99} \)

\( 26 \)

\( r_{25} + r_{26}\cdot r_{67} + r_{26}\cdot s_{34} \)

\( 27 \)

\( r_{26} + r_{27}\cdot r_{67} + r_{27}\cdot s_{34} \)

\( 28 \)

\( r_{27} + r_{28}\cdot r_{67} + r_{28}\cdot s_{34} + r_{99} \)

\( 29 \)

\( r_{28} + r_{29}\cdot r_{67} + r_{29}\cdot s_{34} \)

\( 30 \)

\( r_{29} + r_{30}\cdot r_{67} + r_{30}\cdot s_{34} \)

\( 31 \)

\( r_{30} + r_{31}\cdot r_{67} + r_{31}\cdot s_{34} \)

\( 32 \)

\( r_{31} + r_{32}\cdot r_{67} + r_{32}\cdot s_{34} \)

\( 33 \)

\( r_{32} + r_{33}\cdot r_{67} + r_{33}\cdot s_{34} \)

\( 34 \)

\( r_{33} + r_{34}\cdot r_{67} + r_{34}\cdot s_{34} \)

\( 35 \)

\( r_{34} + r_{35}\cdot r_{67} + r_{35}\cdot s_{34} \)

\( 36 \)

\( r_{35} + r_{36}\cdot r_{67} + r_{36}\cdot s_{34} \)

\( 37 \)

\( r_{36} + r_{37}\cdot r_{67} + r_{37}\cdot s_{34} + r_{99} \)

\( 38 \)

\( r_{37} + r_{38}\cdot r_{67} + r_{38}\cdot s_{34} + r_{99} \)

\( 39 \)

\( r_{38} + r_{39}\cdot r_{67} + r_{39}\cdot s_{34} \)

\( 40 \)

\( r_{39} + r_{40}\cdot r_{67} + r_{40}\cdot s_{34} \)

\( 41 \)

\( r_{40} + r_{41}\cdot r_{67} + r_{41}\cdot s_{34} + r_{99} \)

\( 42 \)

\( r_{41} + r_{42}\cdot r_{67} + r_{42}\cdot s_{34} + r_{99} \)

\( 43 \)

\( r_{42} + r_{43}\cdot r_{67} + r_{43}\cdot s_{34} \)

\( 44 \)

\( r_{43} + r_{44}\cdot r_{67} + r_{44}\cdot s_{34} \)

\( 45 \)

\( r_{44} + r_{45}\cdot r_{67} + r_{45}\cdot s_{34} + r_{99} \)

\( 46 \)

\( r_{45} + r_{46}\cdot r_{67} + r_{46}\cdot s_{34} + r_{99} \)

\( 47 \)

\( r_{46} + r_{47}\cdot r_{67} + r_{47}\cdot s_{34} \)

\( 48 \)

\( r_{47} + r_{48}\cdot r_{67} + r_{48}\cdot s_{34} \)

\( 49 \)

\( r_{48} + r_{49}\cdot r_{67} + r_{49}\cdot s_{34} \)

\( 50 \)

\( r_{49} + r_{50}\cdot r_{67} + r_{50}\cdot s_{34} + r_{99} \)

\( 51 \)

\( r_{50} + r_{51}\cdot r_{67} + r_{51}\cdot s_{34} \)

\( 52 \)

\( r_{51} + r_{52}\cdot r_{67} + r_{52}\cdot s_{34} + r_{99} \)

\( 53 \)

\( r_{52} + r_{53}\cdot r_{67} + r_{53}\cdot s_{34} \)

\( 54 \)

\( r_{53} + r_{54}\cdot r_{67} + r_{54}\cdot s_{34} + r_{99} \)

\( 55 \)

\( r_{54} + r_{55}\cdot r_{67} + r_{55}\cdot s_{34} \)

\( 56 \)

\( r_{55} + r_{56}\cdot r_{67} + r_{56}\cdot s_{34} + r_{99} \)

\( 57 \)

\( r_{56} + r_{57}\cdot r_{67} + r_{57}\cdot s_{34} \)

\( 58 \)

\( r_{57} + r_{58}\cdot r_{67} + r_{58}\cdot s_{34} + r_{99} \)

\( 59 \)

\( r_{58} + r_{59}\cdot r_{67} + r_{59}\cdot s_{34} \)

\( 60 \)

\( r_{59} + r_{60}\cdot r_{67} + r_{60}\cdot s_{34} + r_{99} \)

\( 61 \)

\( r_{60} + r_{61}\cdot r_{67} + r_{61}\cdot s_{34} + r_{99} \)

\( 62 \)

\( r_{61} + r_{62}\cdot r_{67} + r_{62}\cdot s_{34} \)

\( 63 \)

\( r_{62} + r_{63}\cdot r_{67} + r_{63}\cdot s_{34} + r_{99} \)

\( 64 \)

\( r_{63} + r_{64}\cdot r_{67} + r_{64}\cdot s_{34} + r_{99} \)

\( 65 \)

\( r_{64} + r_{65}\cdot r_{67} + r_{65}\cdot s_{34} + r_{99} \)

\( 66 \)

\( r_{65} + r_{66}\cdot r_{67} + r_{66}\cdot s_{34} + r_{99} \)

\( 67 \)

\( r_{66} + r_{67}\cdot s_{34} + r_{67} + r_{99} \)

\( 68 \)

\( r_{67}\cdot r_{68} + r_{67} + r_{68}\cdot s_{34} \)

\( 69 \)

\( r_{67}\cdot r_{69} + r_{68} + r_{69}\cdot s_{34} \)

\( 70 \)

\( r_{67}\cdot r_{70} + r_{69} + r_{70}\cdot s_{34}\)

\( 71 \)

\( r_{67}\cdot r_{71} + r_{70} + r_{71}\cdot s_{34} + r_{99} \)

\( 72 \)

\( r_{67}\cdot r_{72} + r_{71} + r_{72}\cdot s_{34} + r_{99} \)

\( 73 \)

\( r_{67}\cdot r_{73} + r_{72} + r_{73}\cdot s_{34} \)

\( 74 \)

\( r_{67}\cdot r_{74} + r_{73} + r_{74}\cdot s_{34} \)

\( 75 \)

\( r_{67}\cdot r_{75} + r_{74} + r_{75}\cdot s_{34} \)

\( 76 \)

\( r_{67}\cdot r_{76} + r_{75} + r_{76}\cdot s_{34} \)

\( 77 \)

\( r_{67}\cdot r_{77} + r_{76} + r_{77}\cdot s_{34} \)

\( 78 \)

\( r_{67}\cdot r_{78} + r_{77} + r_{78}\cdot s_{34} \)

\( 79 \)

\( r_{67}\cdot r_{79} + r_{78} + r_{79}\cdot s_{34} + r_{99} \)

\( 80 \)

\( r_{67}\cdot r_{80} + r_{79} + r_{80}\cdot s_{34} + r_{99} \)

\( 81 \)

\( r_{67}\cdot r_{81} + r_{80} + r_{81}\cdot s_{34} + r_{99} \)

\( 82 \)

\( r_{67}\cdot r_{82} + r_{81} + r_{82}\cdot s_{34} + r_{99} \)

\( 83 \)

\( r_{67}\cdot r_{83} + r_{82} + r_{83}\cdot s_{34} \)

\( 84 \)

\( r_{67}\cdot r_{84} + r_{83} + r_{84}\cdot s_{34} \)

\( 85 \)

\( r_{67}\cdot r_{85} + r_{84} + r_{85}\cdot s_{34} \)

\( 86 \)

\( r_{67}\cdot r_{86} + r_{85} + r_{86}\cdot s_{34} \)

\( 87 \)

\( r_{67}\cdot r_{87} + r_{86} + r_{87}\cdot s_{34} + r_{99} \)

\( 88 \)

\( r_{67}\cdot r_{88} + r_{87} + r_{88}\cdot s_{34} + r_{99} \)

\( 89 \)

\( r_{67}\cdot r_{89} + r_{88} + r_{89}\cdot s_{34} + r_{99} \)

\( 90 \)

\( r_{67}\cdot r_{90} + r_{89} + r_{90}\cdot s_{34} + r_{99} \)

\( 91 \)

\( r_{67}\cdot r_{91} + r_{90} + r_{91}\cdot s_{34} + r_{99} \)

\( 92 \)

\( r_{67}\cdot r_{92} + r_{91} + r_{92}\cdot s_{34} + r_{99} \)

\( 93 \)

\( r_{67}\cdot r_{93} + r_{92} + r_{93}\cdot s_{34} \)

\( 94 \)

\( r_{67}\cdot r_{94} + r_{93} + r_{94}\cdot s_{34} + r_{99} \)

\( 95 \)

\( r_{67}\cdot r_{95} + r_{94} + r_{95}\cdot s_{34} + r_{99} \)

\( 96 \)

\( r_{67}\cdot r_{96} + r_{95} + r_{96}\cdot s_{34} + r_{99} \)

\( 97 \)

\( r_{67}\cdot r_{97} + r_{96} + r_{97}\cdot s_{34} + r_{99} \)

\( 98 \)

\( r_{67}\cdot r_{98} + r_{97} + r_{98}\cdot s_{34} \)

\( 99 \)

\( r_{67}\cdot r_{99} + r_{98} + r_{99}\cdot s_{34} \)

The functions \(\beta _i\,\forall i \in [0,99]\)

\( 0 \)

\( s_{99} \)

\( 1 \)

\( s_{0} + s_{1}\cdot s_{2} + s_{1} + s_{99} \)

\( 2 \)

\( s_{1} + s_{2}\cdot s_{3} + s_{99} \)

\( 3 \)

\( r_{33}\cdot s_{99} + s_{2} + s_{3}\cdot s_{4} + s_{3} + s_{67}\cdot s_{99} + s_{99} \)

\( 4 \)

\( r_{33}\cdot s_{99} + s_{3} + s_{4}\cdot s_{5} + s_{4} + s_{5} + s_{67}\cdot s_{99} + 1 \)

\( 5 \)

\( s_{4} + s_{5}\cdot s_{6} + s_{6} + s_{99} \)

\( 6 \)

\( r_{33}\cdot s_{99} + s_{5} + s_{6}\cdot s_{7} + s_{67}\cdot s_{99} \)

\( 7 \)

\( r_{33}\cdot s_{99} + s_{6} + s_{7}\cdot s_{8} + s_{7} + s_{67}\cdot s_{99} + s_{99} \)

\( 8 \)

\( r_{33}\cdot s_{99} + s_{7} + s_{8}\cdot s_{9} + s_{67}\cdot s_{99} + s_{99} \)

\( 9 \)

\( r_{33}\cdot s_{99} + s_{8} + s_{9}\cdot s_{10} + s_{9} + s_{10} + s_{67}\cdot s_{99} + s_{99} + 1 ~~~\)

\( 10 \)

\( r_{33}\cdot s_{99} + s_{9} + s_{10}\cdot s_{11} + s_{10} + s_{67}\cdot s_{99} + s_{99} \)

\( 11 \)

\( s_{10} + s_{11}\cdot s_{12} + s_{11} + s_{12} + s_{99} + 1 \)

\( 12 \)

\( s_{11} + s_{12}\cdot s_{13} + s_{12} + s_{13} + s_{99} + 1 \)

\( 13 \)

\( s_{12} + s_{13}\cdot s_{14} + s_{14} + s_{99} \)

\( 14 \)

\( r_{33}\cdot s_{99} + s_{13} + s_{14}\cdot s_{15} + s_{15} + s_{67}\cdot s_{99} + s_{99} \)

\( 15 \)

\( r_{33}\cdot s_{99} + s_{14} + s_{15}\cdot s_{16} + s_{15} + s_{67}\cdot s_{99} \)

\( 16 \)

\( s_{15} + s_{16}\cdot s_{17} + s_{17} \)

\( 17 \)

\( r_{33}\cdot s_{99} + s_{16} + s_{17}\cdot s_{18} + s_{17} + s_{67}\cdot s_{99} + s_{99} \)

\( 18 \)

\( r_{33}\cdot s_{99} + s_{17} + s_{18}\cdot s_{19} + s_{67}\cdot s_{99} \)

\( 19 \)

\( s_{18} + s_{19}\cdot s_{20} + s_{20} + s_{99} \)

\( 20 \)

\( r_{33}\cdot s_{99} + s_{19} + s_{20}\cdot s_{21} + s_{67}\cdot s_{99} + s_{99} \)

\( 21 \)

\( r_{33}\cdot s_{99} + s_{20} + s_{21}\cdot s_{22} + s_{21} + s_{22} + s_{67}\cdot s_{99} + s_{99} + 1 \)

\( 22 \)

\( r_{33}\cdot s_{99} + s_{21} + s_{22}\cdot s_{23} + s_{22} + s_{67}\cdot s_{99} + s_{99} \)

\( 23 \)

\( s_{22} + s_{23}\cdot s_{24} + s_{24} + s_{99} \)

\( 24 \)

\( r_{33}\cdot s_{99} + s_{23} + s_{24}\cdot s_{25} + s_{24} + s_{67}\cdot s_{99} + s_{99} \)

\( 25 \)

\( r_{33}\cdot s_{99} + s_{24} + s_{25}\cdot s_{26} + s_{26} + s_{67}\cdot s_{99} + s_{99} \)

\( 26 \)

\( s_{25} + s_{26}\cdot s_{27} + s_{26} + s_{99} \)

\( 27 \)

\( s_{26} + s_{27}\cdot s_{28} + s_{27} + s_{28} + s_{99} + 1 \)

\( 28 \)

\( r_{33}\cdot s_{99} + s_{27} + s_{28}\cdot s_{29} + s_{28} + s_{67}\cdot s_{99} + s_{99} \)

\( 29 \)

\( s_{28} + s_{29}\cdot s_{30} + s_{30} \)

\( 30 \)

\( r_{33}\cdot s_{99} + s_{29} + s_{30}\cdot s_{31} + s_{30} + s_{31} + s_{67}\cdot s_{99} + 1 \)

\( 31 \)

\( r_{33}\cdot s_{99} + s_{30} + s_{31}\cdot s_{32} + s_{31} + s_{67}\cdot s_{99} + s_{99} \)

\( 32 \)

\( s_{31} + s_{32}\cdot s_{33} + s_{32} + s_{33} + s_{99} + 1 \)

\( 33 \)

\( r_{33}\cdot s_{99} + s_{32} + s_{33}\cdot s_{34} + s_{33} + s_{67}\cdot s_{99} \)

\( 34 \)

\( s_{33} + s_{34}\cdot s_{35} \)

\( 35 \)

\( s_{34} + s_{35}\cdot s_{36} + s_{36} \)

\( 36 \)

\( s_{35} + s_{36}\cdot s_{37} \)

\( 37 \)

\( r_{33}\cdot s_{99} + s_{36} + s_{37}\cdot s_{38} + s_{37} + s_{67}\cdot s_{99} \)

\( 38 \)

\( r_{33}\cdot s_{99} + s_{37} + s_{38}\cdot s_{39} + s_{38} + s_{67}\cdot s_{99} \)

\( 39 \)

\( r_{33}\cdot s_{99} + s_{38} + s_{39}\cdot s_{40} + s_{67}\cdot s_{99} + s_{99} \)

\( 40 \)

\( r_{33}\cdot s_{99} + s_{39} + s_{40}\cdot s_{41} + s_{40} + s_{67}\cdot s_{99} + s_{99} \)

\( 41 \)

\( r_{33}\cdot s_{99} + s_{40} + s_{41}\cdot s_{42} + s_{67}\cdot s_{99} + s_{99} \)

\( 42 \)

\( s_{41} + s_{42}\cdot s_{43} + s_{42} \)

\( 43 \)

\( s_{42} + s_{43}\cdot s_{44} + s_{43} + s_{44} + 1 \)

\( 44 \)

\( s_{43} + s_{44}\cdot s_{45} + s_{44} + s_{99} \)

\( 45 \)

\( r_{33}\cdot s_{99} + s_{44} + s_{45}\cdot s_{46} + s_{46} + s_{67}\cdot s_{99} \)

\( 46 \)

\( s_{45} + s_{46}\cdot s_{47} \)

\( 47 \)

\( s_{46} + s_{47}\cdot s_{48} + s_{48} + s_{99} \)

\( 48 \)

\( r_{33}\cdot s_{99} + s_{47} + s_{48}\cdot s_{49} + s_{67}\cdot s_{99} \)

\( 49 \)

\( r_{33}\cdot s_{99} + s_{48} + s_{49}\cdot s_{50} + s_{49} + s_{50} + s_{67}\cdot s_{99} + s_{99} + 1 \)

\( 50 \)

\( s_{49} + s_{50}\cdot s_{51} \)

\( 51 \)

\( r_{33}\cdot s_{99} + s_{50} + s_{51}\cdot s_{52} + s_{67}\cdot s_{99} + s_{99} \)

\( 52 \)

\( r_{33}\cdot s_{99} + s_{51} + s_{52}\cdot s_{53} + s_{67}\cdot s_{99} \)

\( 53 \)

\( s_{52} + s_{53}\cdot s_{54} + s_{53} \)

\( 54 \)

\( r_{33}\cdot s_{99} + s_{53} + s_{54}\cdot s_{55} + s_{55} + s_{67}\cdot s_{99} + s_{99} \)

\( 55 \)

\( s_{54} + s_{55}\cdot s_{56} + s_{55} \)

\( 56 \)

\( s_{55} + s_{56}\cdot s_{57} + s_{56} + s_{57} + s_{99} + 1 \)

\( 57 \)

\( r_{33}\cdot s_{99} + s_{56} + s_{57}\cdot s_{58} + s_{57} + s_{67}\cdot s_{99} + s_{99} \)

\( 58 \)

\( r_{33}\cdot s_{99} + s_{57} + s_{58}\cdot s_{59} + s_{67}\cdot s_{99} + s_{99} \)

\( 59 \)

\( s_{58} + s_{59}\cdot s_{60} + s_{60} + s_{99} \)

\( 60 \)

\( s_{59} + s_{60}\cdot s_{61} + s_{61} \)

\( 61 \)

\( r_{33}\cdot s_{99} + s_{60} + s_{61}\cdot s_{62} + s_{61} + s_{62} + s_{67}\cdot s_{99} + s_{99} + 1 \)

\( 62 \)

\( r_{33}\cdot s_{99} + s_{61} + s_{62}\cdot s_{63} + s_{62} + s_{63} + s_{67}\cdot s_{99} + 1 \)

\( 63 \)

\( r_{33}\cdot s_{99} + s_{62} + s_{63}\cdot s_{64} + s_{63} + s_{67}\cdot s_{99} + s_{99} \)

\( 64 \)

\( r_{33}\cdot s_{99} + s_{63} + s_{64}\cdot s_{65} + s_{64} + s_{67}\cdot s_{99} \)

\( 65 \)

\( s_{64} + s_{65}\cdot s_{66} + s_{65} + s_{66} + s_{99} + 1 \)

\( 66 \)

\( s_{65} + s_{66}\cdot s_{67} + s_{66} \)

\( 67 \)

\( r_{33}\cdot s_{99} + s_{66} + s_{67}\cdot s_{68} + s_{67}\cdot s_{99} + s_{68} \)

\( 68 \)

\( s_{67} + s_{68}\cdot s_{69} + s_{68} \)

\( 69 \)

\( r_{33}\cdot s_{99} + s_{67}\cdot s_{99} + s_{68} + s_{69}\cdot s_{70} + s_{70} \)

\( 70 \)

\( s_{69} + s_{70}\cdot s_{71} + s_{70} + s_{71} + 1 \)

\( 71 \)

\( s_{70} + s_{71}\cdot s_{72} + s_{71} + s_{72} + 1 \)

\( 72 \)

\( r_{33}\cdot s_{99} + s_{67}\cdot s_{99} + s_{71} + s_{72}\cdot s_{73} + s_{72} + s_{73} + 1 \)

\( 73 \)

\( s_{72} + s_{73}\cdot s_{74} + s_{74} \)

\( 74 \)

\( r_{33}\cdot s_{99} + s_{67}\cdot s_{99} + s_{73} + s_{74}\cdot s_{75} + s_{74} + s_{75} + 1 \)

\( 75 \)

\( r_{33}\cdot s_{99} + s_{67}\cdot s_{99} + s_{74} + s_{75}\cdot s_{76} + s_{75} + s_{76} + s_{99} + 1 \)

\( 76 \)

\( r_{33}\cdot s_{99} + s_{67}\cdot s_{99} + s_{75} + s_{76}\cdot s_{77} + s_{76} + s_{77} + s_{99} + 1 \)

\( 77 \)

\( s_{76} + s_{77}\cdot s_{78} + s_{77} + s_{78} + 1 \)

\( 78 \)

\( s_{77} + s_{78}\cdot s_{79} + s_{99} \)

\( 79 \)

\( r_{33}\cdot s_{99} + s_{67}\cdot s_{99} + s_{78} + s_{79}\cdot s_{80} + s_{80} \)

\( 80 \)

\( r_{33}\cdot s_{99} + s_{67}\cdot s_{99} + s_{79} + s_{80}\cdot s_{81} \)

\( 81 \)

\( r_{33}\cdot s_{99} + s_{67}\cdot s_{99} + s_{80} + s_{81}\cdot s_{82} + s_{81} + s_{82} + 1 \)

\( 82 \)

\( r_{33}\cdot s_{99} + s_{67}\cdot s_{99} + s_{81} + s_{82}\cdot s_{83} + s_{83} + s_{99} \)

\( 83 \)

\( s_{82} + s_{83}\cdot s_{84} + s_{84} + s_{99} \)

\( 84 \)

\( r_{33}\cdot s_{99} + s_{67}\cdot s_{99} + s_{83} + s_{84}\cdot s_{85} + s_{85} \)

\( 85 \)

\( s_{84} + s_{85}\cdot s_{86} + s_{86} + s_{99} \)

\( 86 \)

\( s_{85} + s_{86}\cdot s_{87} + s_{86} + s_{87} + s_{99} + 1 \)

\( 87 \)

\( s_{86} + s_{87}\cdot s_{88} + s_{87} + s_{99} \)

\( 88 \)

\( s_{87} + s_{88}\cdot s_{89} + s_{88} + s_{89} + 1 \)

\( 89 \)

\( s_{88} + s_{89}\cdot s_{90} \)

\( 90 \)

\( r_{33}\cdot s_{99} + s_{67}\cdot s_{99} + s_{89} + s_{90}\cdot s_{91} + s_{91} + s_{99} \)

\( 91 \)

\( r_{33}\cdot s_{99} + s_{67}\cdot s_{99} + s_{90} + s_{91}\cdot s_{92} + s_{99} \)

\( 92 \)

\( r_{33}\cdot s_{99} + s_{67}\cdot s_{99} + s_{91} + s_{92}\cdot s_{93} + s_{92} + s_{99} \)

\( 93 \)

\( s_{92} + s_{93}\cdot s_{94} \)

\( 94 \)

\( r_{33}\cdot s_{99} + s_{67}\cdot s_{99} + s_{93} + s_{94}\cdot s_{95} \)

\( 95 \)

\( r_{33}\cdot s_{99} + s_{67}\cdot s_{99} + s_{94} + s_{95}\cdot s_{96} + s_{95} + s_{99} \)

\( 96 \)

\( r_{33}\cdot s_{99} + s_{67}\cdot s_{99} + s_{95} + s_{96}\cdot s_{97} + s_{96} + s_{99} \)

\( 97 \)

\( s_{96} + s_{97}\cdot s_{98} + s_{98} \)

\( 98 \)

\( s_{97} + s_{98}\cdot s_{99} + s_{99} \)

\( 99 \)

\( r_{33}\cdot s_{99} + s_{67}\cdot s_{99} + s_{98} \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Banik, S., Maitra, S. & Sarkar, S. Improved differential fault attack on MICKEY 2.0. J Cryptogr Eng 5, 13–29 (2015). https://doi.org/10.1007/s13389-014-0083-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13389-014-0083-9

Keywords

Navigation