Skip to main content

Information-Combining Differential Fault Attacks on DEFAULT

  • Conference paper
  • First Online:
Advances in Cryptology – EUROCRYPT 2022 (EUROCRYPT 2022)

Abstract

Differential fault analysis (DFA) is a very powerful attack vector for implementations of symmetric cryptography. Most countermeasures are applied at the implementation level. At ASIACRYPT 2021, Baksi et al. proposed a design strategy that aims to provide inherent cipher level resistance against DFA by using S-boxes with linear structures. They argue that in their instantiation, the block cipher DEFAULT, a DFA adversary can learn at most 64 of the 128 key bits, so the remaining brute-force complexity of \(2^{64}\) is impractical.

In this paper, we show that a DFA adversary can combine information across rounds to recover the full key, invalidating their security claim. In particular, we observe that such ciphers exhibit large classes of equivalent keys that can be represented efficiently in normalized form using linear equations. We exploit this in combination with the specifics of DEFAULT’s strong key schedule to recover the key using less than 100 faulty computation and negligible time complexity. Moreover, we show that even an idealized version of DEFAULT with independent round keys is vulnerable to our information-combining attacks based on normalized keys.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Baksi, A., Bhasin, S., Breier, J., Khairallah, M., Peyrin, T., Sarkar, S., Sim, S.M.: DEFAULT: Cipher level resistance against differential fault attack. In: Tibouchi, M., Wang, H. (eds.) ASIACRYPT 2021. LNCS, vol. 13091, pp. 124–156. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-92075-3_5

  2. Baksi, A., et al.: DEFAULT: Cipher level resistance against differential fault attack. IACR Cryptology ePrint Archive, Report 2021/712 (2021), https://eprint.iacr.org/2021/712/20210528:092448

  3. Bar-El, H., Choukri, H., Naccache, D., Tunstall, M., Whelan, C.: The sorcerer’s apprentice guide to fault attacks. Proc. IEEE 94(2), 370–382 (2006). https://doi.org/10.1109/JPROC.2005.862424

    Article  Google Scholar 

  4. Beierle, C., Leander, G., Moradi, A., Rasoolzadeh, S.: CRAFT: lightweight tweakable block cipher with efficient protection against DFA attacks. IACR Trans. Symmet. Cryptol. 2019(1), 5–45 (2019). https://doi.org/10.13154/tosc.v2019.i1.5-45

  5. Biham, E., Shamir, A.: Differential cryptanalysis of DES-like cryptosystems. In: Menezes, A., Vanstone, S.A. (eds.) CRYPTO 1990. LNCS, vol. 537, pp. 2–21. Springer, Berlin (1990). https://doi.org/10.1007/3-540-38424-3_1

  6. Biham, E., Shamir, A.: Differential fault analysis of secret key cryptosystems. In: Kaliski, B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 513–525. Springer, Heidelberg (1997). https://doi.org/10.1007/BFb0052259

    Chapter  Google Scholar 

  7. Blömer, J., Krummel, V.: Fault based collision attacks on AES. In: Breveglieri, L., Koren, I., Naccache, D., Seifert, J.P. (eds.) FDTC 2006. LNCS, vol. 4236, pp. 106–120. Springer, Berlin (2006). https://doi.org/10.1007/11889700_11

  8. Dobraunig, C., Eichlseder, M., Korak, T., Lomné, V., Mendel, F.: Statistical fault attacks on nonce-based authenticated encryption schemes. In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016. LNCS, vol. 10031, pp. 369–395. Springer, Berlin (2016). https://doi.org/10.1007/978-3-662-53887-6_14

  9. Dobraunig, C., Mennink, B., Primas, R.: Leakage and tamper resilient permutation-based cryptography. IACR Cryptology ePrint Archive, Report 2020/200 (2020). https://ia.cr/2020/200

  10. Gierlichs, B., Schmidt, J.M., Tunstall, M.: Infective computation and dummy rounds: fault protection for block ciphers without check-before-output. In: Hevia, A., Neven, G. (eds.) LATINCRYPT 2012. LNCS, vol. 7533, pp. 305–321. Springer, Berlin (2012). https://doi.org/10.1007/978-3-642-33481-8_17

  11. Giraud, C., Thillard, A.: Piret and quisquater’s DFA on AES revisited. IACR Cryptology ePrint Archive, Report 2010/440 (2010). https://ia.cr/2010/440

  12. Knudsen, L.R.: Truncated and higher order differentials. In: Preneel, B. (ed.) FSE 1994. LNCS, vol. 1008, pp. 196–211. Springer, Berlin (1994). https://doi.org/10.1007/3-540-60590-8_16

  13. Medwed, M., Standaert, F.X., Großschädl, J., Regazzoni, F.: Fresh re-keying: Security against side-channel and fault attacks for low-cost devices. In: Bernstein, D.J., Lange, T. (eds.) AFRICACRYPT 2010. LNCS, vol. 6055, pp. 279–296. Springer, Berlin (2010). https://doi.org/10.1007/978-3-642-12678-9_17

  14. Patranabis, S., Chakraborty, A., Mukhopadhyay, D.: Fault tolerant infective countermeasure for AES. In: Chakraborty, R.S., Schwabe, P., Solworth, J.A. (eds.) SPACE 2015. LNCS, vol. 9354, pp. 190–209. Springer, Berlin (2015). https://doi.org/10.1007/978-3-319-24126-5_12

  15. Piret, G., Quisquater, J.J.: A differential fault attack technique against SPN structures, with application to the AES and KHAZAD. In: Walter, C.D., Koç, Ç.K., Paar, C. (eds.) CHES 2003. LNCS, vol. 2779, pp. 77–88. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-45238-6_7

  16. Simon, T., Batina, L., Daemen, J., Grosso, V., Massolino, P.M.C., Papagiannopoulos, K., Regazzoni, F., Samwel, N.: Friet: An authenticated encryption scheme with built-in fault detection. In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020. LNCS, vol. 12105, pp. 581–611. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45721-1_21

  17. Tupsamudre, H., Bisht, S., Mukhopadhyay, D.: Destroying fault invariant with randomization - A countermeasure for AES against differential fault attacks. In: Batina, L., Robshaw, M. (eds.) CHES 2014. LNCS, vol. 8731, pp. 93–111. Springer, Berlin (2014). https://doi.org/10.1007/978-3-662-44709-3_6

Download references

Acknowledgments

We thank the DEFAULT designers for their comments. Additional funding was provided by a generous gift from Google. Any findings expressed in this paper are those of the authors and do not necessarily reflect the views of the funding parties.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcel Nageler .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 International Association for Cryptologic Research

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Nageler, M., Dobraunig, C., Eichlseder, M. (2022). Information-Combining Differential Fault Attacks on DEFAULT. In: Dunkelman, O., Dziembowski, S. (eds) Advances in Cryptology – EUROCRYPT 2022. EUROCRYPT 2022. Lecture Notes in Computer Science, vol 13277. Springer, Cham. https://doi.org/10.1007/978-3-031-07082-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-07082-2_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-07081-5

  • Online ISBN: 978-3-031-07082-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics