Skip to main content
Log in

On some boundary value methods for stiff IVPs in ODEs

  • Published:
Afrika Matematika Aims and scope Submit manuscript

Abstract

A boundary value method (BVM) leads to a discrete boundary value problem with some conditions imposed at the initial points and the remaining ones at the final points. The interest in this class of methods is the fact that BVMs overcome the limitations of the well-known Dahlquist order and stability barrier for an A-stable linear multistep method (LMM). Yet, A-stability is fundamental to the integration of stiff ordinary differential equations (ODEs). This presents multiple families of linear multistep formulas (LMFs) with future points based on extended backward differentiation formula (BDF) which can be used as a main method in a BVM implementation for the solution of initial value problems (IVPs) in ODEs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Akinfenwa, O.A.: Seven step Adams type block method with continuous coefficient for periodic ordinary differential equation. Word Acad. Sci. Eng. Technol. 74, 848–853 (2011)

    Google Scholar 

  2. Amodio, P., Mazzia, F.: Boundary value methods for the solution of differential-algebraic equations. Numer. Math. 66, 411–421 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  3. Axelsson, A.O.H., Verwer, J.G.: Boundary value techniques for initial value problems in ordinary differential equations. Math. Comput. 45, 153–171 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  4. Brugnano, L., Trigiante, D.: High order multistep methods for boundary value problems. Appl. Numer. Math. 18, 79–94 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  5. Brugnano, L., Trigiante, D.: Convergence and stability of boundary value methods for ordinary differential equations. J. Comput. Appl. Math. 66, 97–109 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  6. Brugnano, L., Trigiante, D.: Block boundary value methods for linear hamiltonian systems. Appl. Math. Comput. 81, 49–68 (1997)

    MathSciNet  MATH  Google Scholar 

  7. Brugnano, L., Trigiante, D.: Solving Differential Problems by Multistep Initial and Boundary Value Methods. Gordon and Breach Science Publishers, Amsterdam (1998)

    MATH  Google Scholar 

  8. Brugnano, L., Trigiante, D.: Block implicit methods for ODEs. In: Trigiante, D. (ed.) Recent Trends in Numerical Analysis. Nova Science Publishers Inc., New York (2001)

    Google Scholar 

  9. Brugnano, L., Lavernaro, F., Susca, T.: Hamiltonian BVMs (HBVMs): implementation details and applications. AIP Conf. Proc. 1168, 723–726 (2009)

    Article  MATH  Google Scholar 

  10. Brugnano, L., Lavernaro, F., Trigiante, D.: Hamiltonian BVMs (HBVMs): a family of drift-free methods for integrating polynomial Hamiltonian systems. AIP Conf. Proc. 1168, 715–718 (2009)

    Article  MATH  Google Scholar 

  11. Brugnano, L., Lavernaro, F., Trigiante, D.: Numerical comparisons among some methods for Hamiltonian problems. AIP Conf. Proc. 1281, 214–218 (2010)

    Article  Google Scholar 

  12. Brugnano, L., Lavernaro, F., Trigiante, D.: Hamiltonian boundary value methods (energy preserving discrete line integral methods). J. Numer. Anal. Ind. Appl. Math. 5(1–2), 17–37 (2010)

    MathSciNet  MATH  Google Scholar 

  13. Brugnano, L., Lavernaro, F., Trigiante, D.: A note on the efficient implementation of Hamiltonian BVMs. J. Comput. Appl. Math. 236, 375–383 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  14. Butcher, J.C.: On the convergence of the numerical solutions to ordinary differential equations. Math. Comput. 20, 1–10 (1966)

    Article  MathSciNet  MATH  Google Scholar 

  15. Carasso, A., Parter, S.V.: An analysis of boundary value techniques for parabolic equations. Math. Comput. 24, 315–340 (1970)

    MATH  Google Scholar 

  16. Cash, J.R.: Stable Recursions. Academic Press, London (1979)

    MATH  Google Scholar 

  17. Cash, J.R.: On the integration of stiff systems of ODEs using extended backward differentiation formulae. Numer. Math. 34, 235–246 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  18. Ehigie, J.O., Jator, S.N., Sofoluwe, A.B., Okunuga, S.A.: Boundary value technique for initial value problems with continuous second derivative multistep method of Enright. Comput. Appl. Math. 33(1), 81–93 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  19. Ehigie, J.O., Okunuga, S.A.: \(L(\alpha )\)-stable second derivative block multistep formula for stiff initial value problems. IAENG Int. J. Appl. Math. 44(3), 157–162 (2014)

    MathSciNet  Google Scholar 

  20. Fatunla, S.O.: Numerical Methods for Initial Value Problems in Ordinary Differential Equations. Academic Press Inc., London (1989)

    MATH  Google Scholar 

  21. Gear, C.W.: Numerical Initial Value Problems in Ordinary Differential Equations. Prentice-Hall, New Jersey (1971)

    MATH  Google Scholar 

  22. Hairer, E., Wanner, G.: Solving Ordinary Differential Equations II. Springer, Berlin (1996)

    Book  MATH  Google Scholar 

  23. Jia-Xiang, X., Jiao-Xun, K.: A class of DBDF methods with the derivative modifying term. J Comput. Math. 6(1), 7–13 (1988)

    MathSciNet  MATH  Google Scholar 

  24. Lambert, J.D.: Numerical Methods for Ordinary Differential Equations. Wiley, New York (1991)

    MATH  Google Scholar 

  25. Lopez, L., Trigiante, D.: Boundary value methods and BV-stability in the solution of initial value problems. Appl. Numer. Math. 11, 225–239 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  26. Mazzia, F.: Boundary Value Methods for the numerical solution of boundary value problems in differential-algebraic equations. Bollettino dellUnione Matematica Italiana (7) 11–A, 579–593 (1997)

    MATH  Google Scholar 

  27. Mazzia, F., Sestini, A., Trigiante, D.: B-spline linear multistep methods and their continuous extensions. SIAM J. Numer. Anal. 44(5), 1954–1973 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  28. Mazzia, F., Sestini, A., Trigiante, D.: The continuous extension of B-spline linear multistep methods for BVPs on non-uniform meshes. Appl. Numer. Math. 59(3–4), 723–738 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  29. Mazzia, F., Sestini, A.: The BS class of Hermite spline quasi-interpolants on nonuniform knot distributions. BIT Numer. Math. 49, 611–628 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  30. Mazzia, F., Sestini, A.: Quadrature formulas descending from BS Hermite spline quasi-interpolation. J. Comput. Appl. Math. 236(16), 4105–4118 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  31. Mazzia, F., Nagy, A.M.: Solving Volterra integro-differential equations by variable stepsize block BS methods: properties and implementation techniques. Appl. Math. Comput. 239, 198–210 (2014)

    MathSciNet  MATH  Google Scholar 

  32. Ng, M.K.: Iterative Methods for Toeplitz Systems. Oxford University Press Inc., New York (2004)

    MATH  Google Scholar 

  33. Nwachukwu, G.C., Okor, T.: Second derivative generalized backward differentiation formulae for solving stiff problems. IAENG Int. J. Appl. Math. 48(1), 1–15 (2018)

    MathSciNet  Google Scholar 

Download references

Acknowledgements

We wish to acknowledge the useful comments of the anonymous referees which have greatly improved the quality of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. C. Nwachukwu.

Additional information

J. Osaghae: Passed on before this work was concluded. His contribution especially with the preliminary investigation in this work is acknowledged.

Appendix

Appendix

See Tables 6, 7, 8, 9.

Table 6 Condition numbers of the matrices \(A-qB\) associated with the \(A_{k,s}\)-stable methods for \(s=1(1)5\); \(h=1\), \(\lambda =1\), \(q=h\lambda \)
Table 7 Condition numbers of the matrices \(A-qB\) associated with the \(A_{k,s}\)-stable methods for \(s=1(1)5\); \(h=1\), \(\lambda =1\), \(q=h\lambda \) (continuation)
Table 8 The coefficients, error constant (EC) and order p of (2.1) for \(s=1\), \(y_{n+k}=\sum _{j=0}^{k-1}\alpha _j y_{n+j}+h\sum _{j=k}^{k+s}\beta _j f_{n+j},p=k+1\)
Table 9 The coefficients, error constant (EC) and order p of (2.1) for \(s=1\), \(y_{n+k}=\sum _{j=0}^{k-1}\alpha _j y_{n+j}+h\sum _{j=k}^{k+s}\beta _j f_{n+j},p=k+1\) (continuation)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nwachukwu, G.C., Ikhile, M.N.O. & Osaghae, J. On some boundary value methods for stiff IVPs in ODEs. Afr. Mat. 29, 731–752 (2018). https://doi.org/10.1007/s13370-018-0574-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13370-018-0574-4

Keywords

Mathematics Subject Classification

Navigation