Skip to main content
Log in

Feasibility of Waste Fat Chicken Biodiesel–Diesel Blend in Modern Common-Rail Direct Injection (CRDI) Turbocharged Diesel Engine: A Potential Study of Saudi Arabia

  • Research Article-Mechanical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

The Kingdom of Saudi Arabia (KSA) is facing extreme gas emissions challenges in the energy and transport sector. So, it is always preferred to use fuels that should be derived from waste to energy resources that are available abundantly without harmful environmental emissions. This experimental study uses neat diesel, and waste fat chicken oil blends to investigate the performance and emissions parameters in high-pressure common-rail multi-cylinder diesel engines. The tested fuel blends are prepared with the ratios of 10% biodiesel–diesel 90% (DB10), 15% biodiesel–diesel 85% (DB15), and 20% biodiesel–diesel 80% (DB20). The experimental results showed that, at 2000 rpm, torque and brake power produced by DB10 is 7.93% and 6.1% greater than the other diesel fuel due to its high heating value and density. The decrease in CO (16.66%), CO2 (10.79%), and HC (10.79%) emissions of DB10 compared to other diesel fuels was due to better ignition quality, higher oxygen content, and proper combustion. DB10 showed a slight increase in NOx emission (0.39%) compared to DF. Therefore, it is concluded from the performance and emission results that the DB10 is the most suitable alternative fuel compared to diesel, DB15, and DB20, and it can be used in the KSA without any modification in diesel engines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

ASTM:

American Society for Testing Materials

B100:

Clean waste fat chicken biodiesel

BSFC:

Brake-specific fuel consumption

BTE:

Brake thermal efficiency

CO:

Carbon monoxide

CO2 :

Carbon dioxide

DB10:

10% Waste fat chicken biodiesel–diesel 90%

DB15:

15% Waste fat chicken biodiesel–diesel 85%

DB20:

20% Waste fat chicken biodiesel–diesel 80%

DF:

Neat diesel (100% diesel)

HC:

Hydrocarbons

HRR:

Heat release rate

KSA:

Kingdom of Saudi Arabia

N:

Nitrogen

NO:

Nitrogen oxide

NOx :

Oxides of nitrogen

O2 :

Oxygen

SO2 :

Sulfur dioxide

TPO:

Tire pyrolysis oil

References

  1. Yaqoob, H.; Ali, H.M.: Sustainability analysis of neat waste tire oil powered diesel engine: a thermodynamics approach. Process Saf. Environ. Prot. 182, 1121–1129 (2024). https://doi.org/10.1016/j.psep.2023.12.051

    Article  Google Scholar 

  2. Madane, P.A.; Bhowmik, S.; Panua, R.: Impact of compression ratio on combustion, performance and exhaust emissions of diesel engine fueled with Undi methyl ester-diesel and Undi ethyl ester-diesel blends. J. Therm. Anal. Calorim. 147, 11345–11362 (2022). https://doi.org/10.1007/s10973-022-11288-6

    Article  Google Scholar 

  3. Yaqoob, H.; Tan, E.S.; Ali, H.M.; Ong, H.C.; Jamil, M.A.; Farooq, M.U.: Sustainable energy generation from plastic waste: an in-depth review of diesel engine application. Environ. Technol. Innov. 34, 103467 (2024). https://doi.org/10.1016/j.eti.2023.103467

    Article  Google Scholar 

  4. Bharathiraja, M.; Venkatachalam, R.; Senthilmurugan, V.: Performance, emission, energy and exergy analyses of gasoline fumigated DI diesel engine. J. Therm. Anal. Calorim. 136, 281–293 (2019). https://doi.org/10.1007/s10973-018-7933-0

    Article  Google Scholar 

  5. Hizami, M.; Yusoff, M.; Hamza, M.; Sher, F.: Hybrid valorization of biodiesel production using sustainable mixed alcohol solvent. Environ. Technol. Innov. 29, 102963 (2023). https://doi.org/10.1016/j.eti.2022.102963

    Article  Google Scholar 

  6. Lai, C.-M.; How, H.G.; Jason, Y.J.J.; Teoh, Y.H.; Yaqoob, H.; Zhang, S.; Rafe Hatshan, M.; Sher, F.: Tribological characterization of graphene hybrid nanolubricants in biofuel engines. Fuel 357, 129654 (2024). https://doi.org/10.1016/j.fuel.2023.129654

    Article  Google Scholar 

  7. Rajendran, S.: A comparative study of performance and emission characteristics of neat biodiesel operated diesel engine: a review. J. Therm. Anal. Calorim. 146, 1015–1025 (2021). https://doi.org/10.1007/s10973-020-10121-2

    Article  Google Scholar 

  8. Yaqoob, H.; Ali, H.M.; Abbas, H.; Abid, O.; Jamil, M.A.; Ahmed, T.: Performance and emissions characteristics of tire pyrolysis oil in diesel engine: an experimental investigation. Clean Technol. Environ. Policy 25, 3177–3187 (2023). https://doi.org/10.1007/s10098-023-02586-0

    Article  Google Scholar 

  9. Babcock, R.E.; Clausen, E.C.; Popp, M.P.; Schulte, W.: Yield characteristics of biodiesel produced from chicken fat-tall oil blended feedstocks. Completion Report Project Number MBTC-2092, US (2008)

  10. Alptekin, E.; Canakci, M.; Ozsezen, A.N.; Turkcan, A.; Sanli, H.: Using waste animal fat based biodiesels–bioethanol–diesel fuel blends in a DI diesel engine. Fuel 157, 245–254 (2015). https://doi.org/10.1016/j.fuel.2015.04.067

    Article  Google Scholar 

  11. Roosta, A.; Sabzpooshan, I.: Modeling the effects of cosolvents on biodiesel production. Fuel 186, 779–786 (2016). https://doi.org/10.1016/j.fuel.2016.09.037

    Article  Google Scholar 

  12. Ryder, K.; Bekhit, A.E.-D.; McConnell, M.; Carne, A.: Towards generation of bioactive peptides from meat industry waste proteins: generation of peptides using commercial microbial proteases. Food Chem. 208, 42–50 (2016). https://doi.org/10.1016/j.foodchem.2016.03.121

    Article  Google Scholar 

  13. Bustillo-Lecompte, C.F.; Mehrvar, M.: Treatment of actual slaughterhouse wastewater by combined anaerobic–aerobic processes for biogas generation and removal of organics and nutrients: an optimization study towards a cleaner production in the meat processing industry. J. Clean. Prod. 141, 278–289 (2017). https://doi.org/10.1016/j.jclepro.2016.09.060

    Article  Google Scholar 

  14. Singh, M.; Sandhu, S.S.: Performance, emission and combustion characteristics of multi-cylinder CRDI engine fueled with argemone biodiesel/diesel blends. Fuel 265, 117024 (2020). https://doi.org/10.1016/j.fuel.2020.117024

    Article  Google Scholar 

  15. Aydın, S.: Detailed evaluation of combustion, performance and emissions of ethyl proxitol and methyl proxitol-safflower biodiesel blends in a power generator diesel engine. Fuel 270, 117492 (2020). https://doi.org/10.1016/j.fuel.2020.117492

    Article  Google Scholar 

  16. Ma, F.; Hanna, M.A.: Biodiesel production: a review. Bioresour. Technol. 70, 1–15 (1999). https://doi.org/10.1016/S0960-8524(99)00025-5

    Article  Google Scholar 

  17. Kirubakaran, M.; Selvan, Arul Mozhi; V.: A comprehensive review of low cost biodiesel production from waste chicken fat. Renew. Sustain. Energy Rev. 82, 390–401 (2018). https://doi.org/10.1016/j.rser.2017.09.039

    Article  Google Scholar 

  18. Bhatti, H.N.; Hanif, M.A.; Qasim, M.: Ata-ur-Rehman: biodiesel production from waste tallow. Fuel 87, 2961–2966 (2008). https://doi.org/10.1016/j.fuel.2008.04.016

    Article  Google Scholar 

  19. Encinar, J.M.; Sánchez, N.; Martínez, G.; García, L.: Study of biodiesel production from animal fats with high free fatty acid content. Bioresour. Technol. 102, 10907–10914 (2011). https://doi.org/10.1016/j.biortech.2011.09.068

    Article  Google Scholar 

  20. Gürü, M.; Koca, A.; Can, Ö.; Çınar, C.; Şahin, F.: Biodiesel production from waste chicken fat based sources and evaluation with Mg based additive in a diesel engine. Renew. Energy. 35, 637–643 (2010). https://doi.org/10.1016/j.renene.2009.08.011

    Article  Google Scholar 

  21. Öner, C.; Altun, Ş: Biodiesel production from inedible animal tallow and an experimental investigation of its use as alternative fuel in a direct injection diesel engine. Appl. Energy. 86, 2114–2120 (2009). https://doi.org/10.1016/j.apenergy.2009.01.005

    Article  Google Scholar 

  22. Cernat, A.; Pana, C.; Negurescu, N.; Lazaroiu, G.; Nutu, C.; Fuiorescu, D.; Toma, M.; Nicolici, A.: Combustion of preheated raw animal fats-diesel fuel blends at diesel engine. J. Therm. Anal. Calorim. 140, 2369–2375 (2020). https://doi.org/10.1007/s10973-019-08972-5

    Article  Google Scholar 

  23. Sajith, V.; Sobhan, C.B.; Peterson, G.P.: Experimental investigations on the effects of cerium oxide nanoparticle fuel additives on biodiesel. Adv. Mech. Eng. (2010). https://doi.org/10.1155/2010/581407

    Article  Google Scholar 

  24. Engine, S.S.I.: Improvements to the composition of fusel oil and analysis of the effects of fusel oil–Gasoline blends. (2018). https://doi.org/10.3390/en11030625

  25. Yesilyurt, M.K.: The examination of a compression-ignition engine powered by peanut oil biodiesel and diesel fuel in terms of energetic and exergetic performance parameters. Fuel 278, 118319 (2020). https://doi.org/10.1016/j.fuel.2020.118319

    Article  Google Scholar 

  26. Sanli, H.; Canakci, M.; Alptekin, E.; Turkcan, A.; Ozsezen, A.N.: Effects of waste frying oil based methyl and ethyl ester biodiesel fuels on the performance, combustion and emission characteristics of a DI diesel engine. Fuel 159, 179–187 (2015). https://doi.org/10.1016/j.fuel.2015.06.081

    Article  Google Scholar 

  27. Gharehghani, A.; Pourrahmani, H.: Performance evaluation of diesel engines (PEDE) for a diesel-biodiesel fueled CI engine using nanoparticles additive. Energy Convers. Manag. 198, 111921 (2019). https://doi.org/10.1016/j.enconman.2019.111921

    Article  Google Scholar 

  28. Gülüm, M.; Yesilyurt, M.K.; Bilgin, A.: The modeling and analysis of transesterification reaction conditions in the selection of optimal biodiesel yield and viscosity. Environ. Sci. Pollut. Res. 27, 10351–10366 (2020). https://doi.org/10.1007/s11356-019-07473-0

    Article  Google Scholar 

  29. Elkelawy, M.; Alm-Eldin Bastawissi, H.; Esmaeil, K.K.; Radwan, A.M.; Panchal, H.; Sadasivuni, K.K.; Ponnamma, D.; Walvekar, R.: Experimental studies on the biodiesel production parameters optimization of sunflower and soybean oil mixture and DI engine combustion, performance, and emission analysis fueled with diesel/biodiesel blends. Fuel 255, 115791 (2019). https://doi.org/10.1016/j.fuel.2019.115791

    Article  Google Scholar 

  30. Elkelawy, M.; Bastawissi, H.A.-E.; Esmaeil, K.K.; Radwan, A.M.; Panchal, H.; Sadasivuni, K.K.; Suresh, M.; Israr, M.: Maximization of biodiesel production from sunflower and soybean oils and prediction of diesel engine performance and emission characteristics through response surface methodology. Fuel 266, 117072 (2020). https://doi.org/10.1016/j.fuel.2020.117072

    Article  Google Scholar 

  31. Heidari-Maleni, A.; Mesri Gundoshmian, T.; Jahanbakhshi, A.; Ghobadian, B.: Performance improvement and exhaust emissions reduction in diesel engine through the use of graphene quantum dot (GQD) nanoparticles and ethanol-biodiesel blends. Fuel 267, 117116 (2020). https://doi.org/10.1016/j.fuel.2020.117116

    Article  Google Scholar 

  32. Uslu, S.; Aydın, M.: Effect of operating parameters on performance and emissions of a diesel engine fueled with ternary blends of palm oil biodiesel/diethyl ether/diesel by Taguchi method. Fuel 275, 117978 (2020). https://doi.org/10.1016/j.fuel.2020.117978

    Article  Google Scholar 

  33. Gürü, M.; Koca, A.; Can, Ö.; Çinar, C.; Şahin, F.: Biodiesel production from waste chicken fat based sources and evaluation with Mg based additive in a diesel engine. Renew. Energy 35, 637–643 (2010). https://doi.org/10.1016/j.renene.2009.08.011

    Article  Google Scholar 

  34. Trading Economics: Saudi Arabia Population, https://tradingeconomics.com/saudi-arabia/population

  35. Akinpelu, A.; Alam, M.S.; Shafiullah, M.; Rahman, S.M.; Al-Ismail, F.S.: Greenhouse gas emission dynamics of Saudi Arabia: potential of hydrogen fuel for emission footprint reduction (2023)

  36. Al-Mutairi, M.; Al-Otaibi, N.; Saber, A.; Abdel Basset, H.; Morsy, M.: Climatological study of air pollutant emissions in Saudi Arabia. Atmos. (Basel). 14, 729 (2023). https://doi.org/10.3390/atmos14040729

    Article  Google Scholar 

  37. Khan, H.M.; Ali, C.H.; Iqbal, T.; Yasin, S.; Sulaiman, M.; Mahmood, H.; Raashid, M.; Pasha, M.; Mu, B.: Current scenario and potential of biodiesel production from waste cooking oil in Pakistan: an overview. Chin. J. Chem. Eng. 27, 2238–2250 (2019). https://doi.org/10.1016/j.cjche.2018.12.010

    Article  Google Scholar 

  38. Hussein, M.; Alan, H.: Poultry and products annual, Riyadh, Saudi Arabia (2020)

  39. Jayathilakan, K.; Sultana, K.; Radhakrishna, K.; Bawa, A.S.: Utilization of byproducts and waste materials from meat, poultry and fish processing industries: a review. J. Food Sci. Technol. 49, 278–293 (2012). https://doi.org/10.1007/s13197-011-0290-7

    Article  Google Scholar 

  40. Abraham, J.; Kumar, R.S.; Xavier, F.; Mathew, D.: Biodiesel production from broiler chicken waste. Int. J. Agric. Biosyst. Eng. 9, 1190–1193 (2015)

    Google Scholar 

  41. Srinivasa Rao, K.; Ramakrishna, A.: Cost estimation analysis of biodiesel production from waste chicken fat. Int. J. Appl. Eng. Res. 10, 8863–8870 (2015)

    Google Scholar 

  42. Faraji Mahyari, Z.; Khorasanizadeh, Z.; Khanali, M.; Faraji Mahyari, K.: Biodiesel production from slaughter wastes of broiler chicken: a potential survey in Iran. SN Appl. Sci. 3, 57 (2021). https://doi.org/10.1007/s42452-020-04045-7

    Article  Google Scholar 

  43. Mordor Intelligence: Saudi Arabia Poultry Meat Market SIZE & SHARE ANALYSIS - GROWTH TRENDS & FORECASTS UP TO 2029, https://www.mordorintelligence.com/industry-reports/saudi-arabia-analysis-of-the-poultry-sector-industry

  44. Sarıdemir, S.; Ağbulut, Ü.: Combustion, performance, vibration and noise characteristics of cottonseed methyl ester–diesel blends fuelled engine. Biofuels (2019). https://doi.org/10.1080/17597269.2019.1667658

    Article  Google Scholar 

  45. Kalam, M.A.; Husnawan, M.; Masjuki, H.H.: Exhaust emission and combustion evaluation of coconut oil-powered indirect injection diesel engine. Renew. Energy. 28, 2405–2415 (2003). https://doi.org/10.1016/S0960-1481(03)00136-8

    Article  Google Scholar 

  46. Usta, N.: Use of tobacco seed oil methyl ester in a turbocharged indirect injection diesel engine. Biomass Bioenergy 28, 77–86 (2005). https://doi.org/10.1016/j.biombioe.2004.06.004

    Article  Google Scholar 

  47. Simsek, S.; Uslu, S.: Determination of a diesel engine operating parameters powered with canola, safflower and waste vegetable oil based biodiesel combination using response surface methodology (RSM). Fuel 270, 117496 (2020). https://doi.org/10.1016/j.fuel.2020.117496

    Article  Google Scholar 

  48. Simsek, S.: Effects of biodiesel obtained from Canola, sefflower oils and waste oils on the engine performance and exhaust emissions. Fuel 265, 117026 (2020). https://doi.org/10.1016/j.fuel.2020.117026

    Article  Google Scholar 

  49. Ozsezen, A.N.; Canakci, M.; Turkcan, A.; Sayin, C.: Performance and combustion characteristics of a DI diesel engine fueled with waste palm oil and canola oil methyl esters. Fuel 88, 629–636 (2009). https://doi.org/10.1016/j.fuel.2008.09.023

    Article  Google Scholar 

  50. Behçet, R.; Oktay, H.; Çakmak, A.; Aydin, H.: Comparison of exhaust emissions of biodiesel–diesel fuel blends produced from animal fats. Renew. Sustain. Energy Rev. 46, 157–165 (2015). https://doi.org/10.1016/j.rser.2015.02.015

    Article  Google Scholar 

  51. Şen, M.; Emiroǧlu, A.O.; Keskin, A.: Production of biodiesel from broiler chicken rendering fat and investigation of its effects on combustion, performance, and emissions of a diesel engine. Energy Fuels 32, 5209–5217 (2018). https://doi.org/10.1021/acs.energyfuels.8b00278

    Article  Google Scholar 

  52. Valente, O.S.; Da Silva, M.J.; Pasa, V.M.D.; Belchior, C.R.P.; Sodré, J.R.: Fuel consumption and emissions from a diesel power generator fuelled with castor oil and soybean biodiesel. Fuel 89, 3637–3642 (2010). https://doi.org/10.1016/j.fuel.2010.07.041

    Article  Google Scholar 

  53. Köne, A.Ç.; Büke, T.: Forecasting of CO2 emissions from fuel combustion using trend analysis. Renew. Sustain. Energy Rev. 14, 2906–2915 (2010). https://doi.org/10.1016/j.rser.2010.06.006

    Article  Google Scholar 

  54. Passaponti, M.; Rosi, L.; Savastano, M.; Giurlani, W.; Miller, H.A.; Lavacchi, A.; Filippi, J.; Zangari, G.; Vizza, F.; Innocenti, M.: Recycling of waste automobile tires: transforming char in oxygen reduction reaction catalysts for alkaline fuel cells. J. Power Sources. 427, 85–90 (2019). https://doi.org/10.1016/j.jpowsour.2019.04.067

    Article  Google Scholar 

  55. Chakraborty, R.; Gupta, A.K.; Chowdhury, R.: Conversion of slaughterhouse and poultry farm animal fats and wastes to biodiesel: parametric sensitivity and fuel quality assessment. Renew. Sustain. Energy Rev. 29, 120–134 (2014). https://doi.org/10.1016/j.rser.2013.08.082

    Article  Google Scholar 

  56. Blythe, N.X.: Fish oil as an alternative fuel for internal combustion engines. Am. Soc. Mech. Eng. Intern. Combust. Engine Div. ICE. 26, 85–92 (1996)

    Google Scholar 

  57. Çetinkaya, M.; Ulusoy, Y.; Tekìn, Y.; Karaosmanoğlu, F.: Engine and winter road test performances of used cooking oil originated biodiesel. Energy Convers. Manag. 46, 1279–1291 (2005). https://doi.org/10.1016/j.enconman.2004.06.022

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the support provided by the Department of Mechanical Engineering King Fahd University of Petroleum and Minerals, Dhahran, Saudi Arabia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hafiz Muhammad Ali.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yaqoob, H., Ali, H.M. Feasibility of Waste Fat Chicken Biodiesel–Diesel Blend in Modern Common-Rail Direct Injection (CRDI) Turbocharged Diesel Engine: A Potential Study of Saudi Arabia. Arab J Sci Eng (2024). https://doi.org/10.1007/s13369-024-09003-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13369-024-09003-8

Keywords

Navigation