Skip to main content
Log in

Gamma Radiation-Induced Modification in Mechanical Properties of Hybrid PVA (Go/Ag)-Based Polymer Nanocomposites

  • Research Article-Physics
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Polymer nanocomposites have been employed for various applications, including biocompatible biomedical devices, electronic devices, UV shielding, and thermal management. There is a pressing need to develop comprehensive characterization approaches that can assess the overall performance of these materials under irradiation conditions, encompassing a broader range of mechanical properties beyond those traditionally studied. In this context a hybrid polymer nanocomposite was developed using Polyvinyl Alcohol, glutaraldehyde, Silver, and Graphene Oxide nanoparticles through a straightforward in situ chemical reduction process. These prepared samples were subjected to varying doses of gamma radiation, ranging from 0 to 10 kGy, to investigate alterations in their structural and mechanical properties. To validate the elemental composition and functional groups present in both unirradiated and irradiated nanocomposites, EDX and FTIR spectra were employed. The investigation to the mechanical characteristics of these samples. In unirradiated samples, elongation at break (ϵf) was determined to be 134.67 ± 1.45%, while radiation exposure resulted in an increase in the ϵf to 175.33 ± 8.01%. Tensile strength (σult) initially declined for the 2 kGy exposure but increased at 5 kGy, only to decrease again with further dose increments. Remarkably, the material exhibited increased toughness as the dose reached 5 kGy, with a measured value of modulus of toughness (MT) at 55.30 ± 6.09 J/m3. These findings shed light on the impact of gamma radiation on the structural and mechanical properties of the polymer nanocomposite material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. De Faria, A.F.; Perreault, F.; Shaulsky, E.; Hoover, L.; Chavez, A.; Elimelech, M.: Antimicrobial electrospun biopolymer nanofiber mats functionalized with graphene oxide? Silver nanocomposites. ACS Appl. Mater. Interfaces 7(23), 12751–12759 (2015)

    Article  Google Scholar 

  2. Naghib, S.M.; Parnian, E.; Keshvari, H.; Omidinia, E.; Eshghan-Malek, M.: Synthesis, characterization and electrochemical evaluation of polyvinylalchol/graphene oxide/silver nanocomposites for glucose biosensing application. Int. J. Electrochem. Sci. 13, 1013–1026 (2018). https://doi.org/10.20964/2018.01.74

    Article  Google Scholar 

  3. Gautam, S.; Sharma, S.; Sharma, B.; Jain, P.: Antibacterial efficacy of poly(vinyl alcohol) nanocomposites reinforced with graphene oxide and silver nanoparticles for packaging applications. Polym. Compos. 42, 2829–2837 (2021). https://doi.org/10.1002/pc.26017

    Article  Google Scholar 

  4. Usman, A.; Hussain, Z.; Riaz, A.; Khan, A.N.: Enhanced mechanical, thermal and antimicrobial properties of poly(vinyl alcohol)/graphene oxide/starch/silver nanocomposites films. Carbohydr. Polym. 153, 592–599 (2016). https://doi.org/10.1016/j.carbpol.2016.08.026

    Article  Google Scholar 

  5. Ghanipour, M.; Dorranian, D.: Effect of Ag-nanoparticles doped in polyvinyl alcohol on the structural and optical properties of PVA films. J. Nanomater. (2013). https://doi.org/10.1155/2013/897043

    Article  Google Scholar 

  6. Xia, W.; Xue, H.; Wang, J.; Wang, T.; Song, L.; Guo, H.; Fan, X.; Gong, H.; He, J.: Functionlized graphene serving as free radical scavenger and corrosion protection in gamma-irradiated epoxy composites. Carbon N Y 101, 315–323 (2016). https://doi.org/10.1016/j.carbon.2016.02.004

    Article  Google Scholar 

  7. da Silva, V.; Paula, M.; de Azevedo, L.A.; de Lima, D.; Silva, I.; da Brito Silva, C.A.; Vinhas, G.M.; Alves, S.: Gamma radiation effect on the chemical, mechanical and thermal properties of PCL/MCM-48-PVA nanocomposite films. Heliyon 9, e18091 (2023). https://doi.org/10.1016/j.heliyon.2023.e18091

    Article  Google Scholar 

  8. Padinhattayil, S.; Rai, K.S.: PVA/GO-ZnO hybrid nanocomposites: synthesis, analysis and applications. Indian J. Sci. Technol. 14, 1982–1992 (2021). https://doi.org/10.17485/IJST/V14I23.236

    Article  Google Scholar 

  9. Zhang, Z.; Liu, Y.; Lin, S.; Wang, Q.: Preparation and properties of glutaraldehyde crosslinked poly(vinyl alcohol) membrane with gradient structure. J. Polym. Res. (2020). https://doi.org/10.1007/s10965-020-02223-0

    Article  Google Scholar 

  10. Zhang, Y.; Zhu, P.C.; Edgren, D.: Crosslinking reaction of poly(vinyl alcohol) with glyoxal. J. Polym. Res. 17, 725–730 (2010). https://doi.org/10.1007/s10965-009-9362-z

    Article  Google Scholar 

  11. Woo, J.H.; Kim, N.H.; Kim, S.I.; Park, O.K.; Lee, J.H.: Effects of the addition of boric acid on the physical properties of MXene/polyvinyl alcohol (PVA) nanocomposite. Compos. B Eng. (2020). https://doi.org/10.1016/j.compositesb.2020.108205

    Article  Google Scholar 

  12. Lai, C.L.; Chen, J.T.; Fu, Y.J.; Liu, W.R.; Zhong, Y.R.; Huang, S.H.; Hung, W.S.; Lue, S.J.; Hu, C.C.; Lee, K.R.: Bio-inspired cross-linking with borate for enhancing gas-barrier properties of poly(vinyl alcohol)/graphene oxide composite films. Carbon N Y 82, 513–522 (2015). https://doi.org/10.1016/j.carbon.2014.11.003

    Article  Google Scholar 

  13. Chmielewski, A.G.: New trends in radiation processing of polymers. In: International Nuclear Atlantic Conference - INAC 2005, associação brasileira de energia nuclear - ABEN, Santos, SP, Brazil (2005)

  14. Kamal, E.; Tawfik, M.: Radiation effect on characterization and physical properties of polymer nanocomposites. Master Thesis, Zagazig University (2013)

  15. Kumar, G.V.; Chandramani, R.: Investigations on Fe 3+ doped polyvinyl alcohol films with and without gamma (γ)-irradiation. Appl. Surf. Sci. 255, 7047–7050 (2009). https://doi.org/10.1016/j.apsusc.2009.03.038

    Article  Google Scholar 

  16. Skiens, W.E.: Sterilizing radiation effects on selected polymers. Radiat. Phys. Chem. 15, 47–57 (1980)

    Google Scholar 

  17. Eghbalifam, N.; Frounchi, M.; Dadbin, S.: Antibacterial silver nanoparticles in polyvinyl alcohol/sodium alginate blend produced by gamma irradiation. Int. J. Biol. Macromol. 80, 170–176 (2015). https://doi.org/10.1016/j.ijbiomac.2015.06.042

    Article  Google Scholar 

  18. Abdel-Galil, A.; Ali, H.E.; Balboul, M.R.: Nano-ZnO doping induced changes in structure, mechanical and optical properties of PVA films. Arab. J. Nucl. Sci. Appl. 48(2), 77–89 (2015)

    Google Scholar 

  19. Salari, M.; Sowti Khiabani, M.; Rezaei Mokarram, R.; Ghanbarzadeh, B.; Samadi Kafil, H.: Use of gamma irradiation technology for modification of bacterial cellulose nanocrystals/chitosan nanocomposite film. Carbohydr. Polym. (2021). https://doi.org/10.1016/j.carbpol.2020.117144

    Article  Google Scholar 

  20. Cieśla, K.; Abramowska, A.: Effect of absorbed dose on starch: PVA films irradiated with gamma rays. Radiat. Phys. Chem. (2021). https://doi.org/10.1016/j.radphyschem.2020.109290

    Article  Google Scholar 

  21. Martínez-Morlanes, M.J.; Castell, P.; Martínez-Nogués, V.; Martinez, M.T.; Alonso, P.J.; Puértolas, J.A.: Effects of gamma-irradiation on UHMWPE/MWNT nanocomposites. Compos. Sci. Technol. 71, 282–288 (2011). https://doi.org/10.1016/j.compscitech.2010.11.013

    Article  Google Scholar 

  22. Hummers, W.S., Jr.; Offeman, R.E.: Preparation of graphitic oxide. J. Am. chem. Soc. 80(6), 1339–1339 (1958)

    Article  Google Scholar 

  23. Kavitha, C.M.; Eshwarappa, K.M.; Shilpa, M.P.; Shetty, S.J.; Surabhi, S.; Shashidhar, A.P.; Karunakara, N.; Gurumurthy, S.C.; Sanjeev, G.: Tuning the optical and electrical properties by gamma irradiation of silver nanoparticles decorated graphene oxide on glutaraldehyde crosslinked polyvinyl alcohol matrix. Mater. Res. Bull. 173, 112685 (2024). https://doi.org/10.1016/j.materresbull.2024.112685

    Article  Google Scholar 

  24. Mruthyunjayappa, K.C.; Paramashivaiah, S.A.; Mallikarjunappa, E.K.; Padre, S.M.; Gurumurthy, S.C.; Surabhi, S.; Jeong, J.R.; Montecinos, D.V.M.; Murari, M.S.: A combined experimental and computational study of flexible polyvinyl alcohol (PVA)/graphene oxide (GO) nanocomposite films for superior UV shielding with improved mechanical properties. Mater. Today Commun. 35, 105662 (2023). https://doi.org/10.1016/j.mtcomm.2023.105662

    Article  Google Scholar 

  25. Sunitha, V.R.; Radhakrishnan, S.: Gamma irradiation effects on conductivity and dielectric behaviour of PEO-based nano-composite polymer electrolyte systems. Polym. Bull. 77, 655–670 (2020). https://doi.org/10.1007/s00289-019-02770-7

    Article  Google Scholar 

  26. Abdelaziz, M.; Abdelrazek, E.M.: Effect of dopant mixture on structural, optical and electron spin resonance properties of polyvinyl alcohol. Physica B Condens Matter. 390, 1–9 (2007). https://doi.org/10.1016/j.physb.2006.07.067

    Article  Google Scholar 

  27. Mahendia, S.; Tomar, A.K.; Kumar, S.: Nano-Ag doping induced changes in optical and electrical behaviour of PVA films. Mater. Sci. Eng. B Sol. State Mater. Adv. Technol. 176, 530–534 (2011). https://doi.org/10.1016/j.mseb.2011.01.008

    Article  Google Scholar 

  28. Abdeldaym, A.; Elhady, M.A.: Role of copper oxide nanoparticles and gamma irradiation in optimising mechanical and the DC-electrical properties of nylon 66. J. Compos. Mater. 54, 3595–3610 (2020). https://doi.org/10.1177/0021998320918347

    Article  Google Scholar 

  29. Elnahas, H.H.; Abdou, S.M.; El-Zahed, H.; Abdeldaym, A.: Structural, morphological and mechanical properties of gamma irradiated low density polyethylene/paraffin wax blends. Radiat. Phys. Chem. 151, 217–224 (2018). https://doi.org/10.1016/j.radphyschem.2018.06.030

    Article  Google Scholar 

  30. Kovačič, S.; Žagar, E.; Slugovc, C.: Strength versus toughness of emulsion templated Poly(Dicyclopentadiene) foams. Polymer. (Guildf) 169, 58–65 (2019). https://doi.org/10.1016/j.polymer.2019.02.045

    Article  Google Scholar 

  31. Rahman, M.T.; Hoque, Md.A.; Rahman, G.T.; Azmi, M.M.; Gafur, M.A.; Khan, R.A.; Hossain, M.K.: Fe2 O3 nanoparticles dispersed unsaturated polyester resin based nanocomposites: effect of gamma radiation on mechanical properties. Radiat. Eff. Defects Sol. 174, 480–493 (2019). https://doi.org/10.1080/10420150.2019.1606809

    Article  Google Scholar 

  32. Tarawneh, M.A.; Saraireh, S.A.; Chen, R.S.; Ahmad, S.H.; Al-Tarawni, M.A.M.; Yu, L.J.: Gamma irradiation influence on mechanical, thermal and conductivity properties of hybrid carbon nanotubes/montmorillonite nanocomposites. Radiat. Phys. Chem. (2021). https://doi.org/10.1016/j.radphyschem.2020.109168

    Article  Google Scholar 

  33. Hassan, M.M.: Synergistic effect of montmorillonite-clay and gamma irradiation on the characterizations of waste polyamide copolymer and reclaimed rubber powder nanocomposites. Compos. B Eng. 79, 28–34 (2015). https://doi.org/10.1016/j.compositesb.2015.01.046

    Article  Google Scholar 

  34. Eyssa, H.M.; Abulyazied, D.E.; Abdulrahman, M.; Youssef, H.A.: Mechanical and physical properties of nanosilica/nitrile butadiene rubber composites cured by gamma irradiation. Egypt. J. Pet. 27, 383–392 (2018). https://doi.org/10.1016/j.ejpe.2017.06.004

    Article  Google Scholar 

  35. Akhavan, A.; Khoylou, F.; Ataeivarjovi, E.: Preparation and characterization of gamma irradiated Starch/PVA/ZnO nanocomposite films. Radiat. Phys. Chem. 138, 49–53 (2017). https://doi.org/10.1016/j.radphyschem.2017.02.057

    Article  Google Scholar 

  36. Khan, R.A.; Beck, S.; Dussault, D.; Salmieri, S.; Bouchard, J.; Lacroix, M.: Mechanical and barrier properties of nanocrystalline cellulose reinforced poly(caprolactone) composites: effect of gamma radiation. J. Appl. Polym. Sci. 129, 3038–3046 (2013). https://doi.org/10.1002/app.38896

    Article  Google Scholar 

  37. Al Naim, A.; Alnaim, N.; Ibrahim, S.S.; Metwally, S.M.: Effect of gamma irradiation on the mechanical properties of PVC/ZnO polymer nanocomposite. J. Radiat. Res. Appl. Sci. 10, 165–171 (2017). https://doi.org/10.1016/j.jrras.2017.03.004

    Article  Google Scholar 

  38. Gorna, K.; Gogolewski, S.: The effect of gamma radiation on molecular stability and mechanical properties of biodegradable polyurethanes for medical applications. Polym. Degrad. Stab. 79, 465–474 (2003). https://doi.org/10.1016/S0141-3910(02)00362-2

    Article  Google Scholar 

  39. Youssef, H.A.; Abdel-Monem, Y.K.; Diab, W.W.: Effect of gamma irradiation on the properties of natural rubber latex and styrene-butadiene rubber latex nanocomposites. Polym. Compos. 38, E189–E198 (2017). https://doi.org/10.1002/pc.23932

    Article  Google Scholar 

  40. Zagho, M.M.; AlMaadeed, M.A.A.; Majeed, K.: Mechanical properties of gamma irradiated TiO2NPs/MWCNTs/LDPE hybrid nanocomposites. Emergent Mater. 3, 675–683 (2020). https://doi.org/10.1007/s42247-020-00115-z

    Article  Google Scholar 

  41. Yamani, Z.; Ha, H.; Jakubinek, M.; Martinez-Rubi, Y.; Simard, B.; Ashrafi, B.: Effects of gamma irradiation on boron nitride nanotubes and related polymer nanocomposites. J. Mater. Res. 37, 4566–4581 (2022). https://doi.org/10.1557/s43578-022-00791-z

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Mr. Sandeep S H, GM Institute of Technology College, Davanagere, Karnataka for helping us in characterizing the mechanical properties.

Funding

The authors have no relevant financial or non-financial interests to disclose.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. M. Eshwarappa.

Ethics declarations

Conflict of interest

The authors did not receive support from any organization for the submitted work.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kavitha, C.M., Eshwarappa, K.M., Gurumurthy, S.C. et al. Gamma Radiation-Induced Modification in Mechanical Properties of Hybrid PVA (Go/Ag)-Based Polymer Nanocomposites. Arab J Sci Eng (2024). https://doi.org/10.1007/s13369-024-08964-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13369-024-08964-0

Keywords

Navigation