Skip to main content
Log in

Implementation of NonLinear Controller with Anti-Windup on Xilinx FPGA

  • Research Article-Computer Engineering and Computer Science
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

This article describes a research study on an electromechanical system with saturation, where a fuzzy hybrid controller with integral action and anti-windup is applied. The study focuses on implementing this Integral Fuzzy Logic Controller (IFLC) on a Field-Programmable Gate Array (FPGA) board. The fuzzy controllers, known for their effectiveness in handling disturbances and saturations, are used in a parallel structure. To optimize the performance of the controller, the Particle Swarm Optimization (PSO) technique is employed to tune the membership functions and feedback loop gains. The complex algebraic concepts and Type 1 fuzzy logic algorithms are transformed into mathematical equations suitable for VHSIC Hardware Description Language (VHDL). The proposed controller is co-simulated using Vivado and Xilinx® System Generator (XSG) tools on both software and hardware platforms. The utilization of fixed-point data propagation in the controller's structure ensures optimized implementation methods. The performance index of our controller surpasses that of a conventional Proportional-Integral-Derivative (PID) controller, demonstrating superior efficacy in regulating the system dynamics. To verify the efficacy of the proposed control strategy, a thorough comparison is done using control simulations between it and previous PID systems. The results show a 31% decrease in speed overshoot.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Masoud, A.A.; Abu-Ali, M.; Al-Shaikhi, A.: Experimental determination of an extended dc servo-motor state space model: an undergraduate experiment. IEEE Access 8, 4908–4923 (2020). https://doi.org/10.1109/ACCESS.2019.2962612

    Article  Google Scholar 

  2. Reyes-Reyes, J.; Astorga-Zaragoza, C.M.; Adam-Medina, M.; Guerrero-Ramrez, G.V.: Bounded neuro-control position regulation for a geared DC motor. Eng. Appl. Artif. Intell. 23(8), 1398–1407 (2010). https://doi.org/10.1016/j.engappai.2010.08.003

    Article  Google Scholar 

  3. Chen, G.; Li, Z.; Zhang, Z.; Li, S.: An improved ACO algorithm optimized fuzzy PID controller for load frequency control in multi area interconnected power systems. IEEE Access 8, 6429–6447 (2020). https://doi.org/10.1109/ACCESS.2019.2960380

    Article  Google Scholar 

  4. Cabré, T.P.; Vela, A.S.; Ribes, M.T.; Blanc, J.M.; Pablo, J.R.; Sancho, F.C.: Didactic platform for DC motor speed and position control in Z-plane. ISA Trans. 118, 116–132 (2021). https://doi.org/10.1016/j.isatra.2021.02.020

    Article  Google Scholar 

  5. Lopez-Gomez, J., et al.: Influence of PWM torque control frequency in DC motors by means of an optimum design method. IEEE Access 8, 80691–80706 (2020). https://doi.org/10.1109/ACCESS.2020.2990158

    Article  Google Scholar 

  6. da Silva, L.R.; Flesch, R.C.C.; Normey-Rico, J.E.: Analysis of anti-windup techniques in PID control of processes with measurement noise ⁎. IFAC-PapersOnLine 51(4), 948–953 (2018). https://doi.org/10.1016/j.ifacol.2018.06.100

    Article  Google Scholar 

  7. Turner, M.C.; Sofrony, J.; Prempain, E.: Anti-windup for model-reference adaptive control schemes with rate-limits. Syst. Control Lett. 137, 104630 (2020). https://doi.org/10.1016/j.sysconle.2020.104630

    Article  MathSciNet  Google Scholar 

  8. Stonier, A.A., et al.: Fuzzy logic control for solar PV fed modular multilevel inverter towards marine water pumping applications. IEEE Access 9(X), 88524–88534 (2021). https://doi.org/10.1109/ACCESS.2021.3090254

    Article  Google Scholar 

  9. Raziyev, Y.; Garifulin, R.; Shintemirov, A.; Do, T.D.: Development of a power assist lifting device with a fuzzy PID speed regulator. IEEE Access 7, 30724–30731 (2019). https://doi.org/10.1109/ACCESS.2019.2903234

    Article  Google Scholar 

  10. Raja, K.; Ramathilagam, S.: Washing machine using fuzzy logic controller to provide wash quality. Soft. Comput. 25(15), 9957–9965 (2021). https://doi.org/10.1007/s00500-020-05477-4

    Article  Google Scholar 

  11. Bicakci, S.: On the implementation of Fuzzy VMC for an under actuated system. IEEE Access 7, 163578–163588 (2019). https://doi.org/10.1109/ACCESS.2019.2952294

    Article  Google Scholar 

  12. Hannan, M.A.; Ghani, Z.A.; Hoque, M.M.; Ker, P.J.; Hussain, A.; Mohamed, A.: Fuzzy logic inverter controller in photovoltaic applications: issues and recommendations. IEEE Access 7, 24934–24955 (2019). https://doi.org/10.1109/ACCESS.2019.2899610

    Article  Google Scholar 

  13. Alabdo, A.; Pérez, J.; Garcia, G.J.; Pomares, J.; Torres, F.: FPGA-based architecture for direct visual control robotic systems. Mechatronics 39, 204–216 (2016). https://doi.org/10.1016/j.mechatronics.2016.05.008

    Article  Google Scholar 

  14. Gul, S.; Siddiqui, M.F.; Ur Rehman, N.: FPGA based real-time implementation of online EMD with fixed point architecture. IEEE Access 7, 176565–176577 (2019). https://doi.org/10.1109/ACCESS.2019.2957819

    Article  Google Scholar 

  15. Ilyas, A.; Khan, M.R.; Ayyub, M.: FPGA based real-time implementation of fuzzy logic controller for maximum power point tracking of solar photovoltaic system. Optik (Stuttg) 213, 164668 (2020). https://doi.org/10.1016/j.ijleo.2020.164668

    Article  Google Scholar 

  16. Gürsoy, H.; Efe, M.Ö.: Control system implementation on an FPGA platform. IFAC-PapersOnLine 49(25), 425–430 (2016). https://doi.org/10.1016/j.ifacol.2016.12.087

    Article  Google Scholar 

  17. Youssef, A.; El Telbany, M.; Zekry, A.: Reconfigurable generic FPGA implementation of fuzzy logic controller for MPPT of PV systems. Renew. Sustain. Energy Rev. 82(2017), 1313–1319 (2018). https://doi.org/10.1016/j.rser.2017.09.093

    Article  Google Scholar 

  18. Monmasson, E.; Idkhajine, L.; Cirstea, M.N.; Bahri, I.; Tisan, A.; Naouar, M.W.: FPGAs in industrial control applications. IEEE Trans. Ind. Inform. 7(2), 224–243 (2011). https://doi.org/10.1109/TII.2011.2123908

    Article  Google Scholar 

  19. Messai, A.; Abdellani, I.; Mellit, A.: FPGA-based real-time implementation of a digital reactivity-meter. Prog. Nucl. Energy 150, 104313 (2022). https://doi.org/10.1016/j.pnucene.2022.104313

    Article  Google Scholar 

  20. Vargas-Treviño, M.A.; Lopez-Gomez, J.; Vergara-Limon, S.; Palomino-Merino, A.; Torres-Reyes, R.; Garcia-Ramirez, P.: A mechatronic approach for ball screw drive system: modeling, control, and validation on an FPGA-based architecture. Int. J. Adv. Manuf. Technol. 104(5–8), 2329–2346 (2019). https://doi.org/10.1007/s00170-019-03945-2

    Article  Google Scholar 

  21. Tanyildizi, A.K.; Yakut, O.; Taşar, B.; Tatar, A.B.: Control of twin-double pendulum lower extremity exoskeleton system with fuzzy logic control method. Neural Comput. Appl. 33(13), 8089–8103 (2021). https://doi.org/10.1007/s00521-020-05554-7

    Article  Google Scholar 

  22. Ekinci, S.; Izci, D.; Hekimoğlu, B.: Optimal FOPID speed control of DC motor via opposition-based hybrid manta ray foraging optimization and simulated annealing algorithm. Arab. J. Sci. Eng. 46(2), 1395–1409 (2021). https://doi.org/10.1007/s13369-020-05050-z

    Article  Google Scholar 

  23. Rajendran, G.; Vaithilingam, C.A.; Naidu, K.; Alsakati, A.A.; Oruganti, K.S.P.; Fauzan, M.F.: Dynamic voltage stability enhancement in electric vehicle battery charger using particle swarm optimization. IEEE Access 10, 97767–97779 (2022). https://doi.org/10.1109/ACCESS.2022.3199416

    Article  Google Scholar 

  24. Wang, R.; Tan, C.; Xu, J.; Wang, Z.; Jin, J.; Man, Y.: Pressure control for a hydraulic cylinder based on a self-tuning PID controller optimized by a hybrid optimization algorithm. Algorithms (2017). https://doi.org/10.3390/a10010019

    Article  Google Scholar 

  25. Farah, N., et al.: Investigation of the computational burden effects of self-tuning fuzzy logic speed controller of induction motor drives with different rules sizes. IEEE Access 9, 155443–155456 (2021). https://doi.org/10.1109/ACCESS.2021.3128351

    Article  Google Scholar 

  26. Odry, Á.; Fullér, R.; Rudas, I.J.; Odry, P.: Fuzzy control of self-balancing robots: a control laboratory project. Comput. Appl. Eng. Educ. 28(3), 512–535 (2020). https://doi.org/10.1002/cae.22219

    Article  Google Scholar 

  27. Wang, T.; Wang, H.; Wang, C.; Hu, H.: A novel PID controller for BLDCM speed control using dual fuzzy logic systems with HSA optimization. Sci. Rep. 12(1), 1–19 (2022). https://doi.org/10.1038/s41598-022-15487-x

    Article  Google Scholar 

  28. Ünsal, S.; Aliskan, I.: Investigation of performance of fuzzy logic controllers optimized with the hybrid genetic-gravitational search algorithm for PMSM speed control. Automatika 63(2), 313–327 (2022). https://doi.org/10.1080/00051144.2022.2036936

    Article  Google Scholar 

  29. Kasruddin Nasir, A.N.; Ahmad, M.A.; Tokhi, M.O.: Hybrid spiral-bacterial foraging algorithm for a fuzzy control design of a flexible manipulator. J. Low Freq. Noise Vib. Act. Control 41(1), 340–358 (2022). https://doi.org/10.1177/14613484211035646

    Article  Google Scholar 

  30. Varga, T.; Benšić, T.; Barukčić, M.; Štil, V.J.: Optimization of fuzzy controller for predictive current control of induction machine. Electron. (2022). https://doi.org/10.3390/electronics11101553

    Article  Google Scholar 

  31. Humaidi, A.J.; Najem, H.T.; Al-Dujaili, A.Q.; Pereira, D.A.; Ibraheem, I.K.; Azar, A.T.: Social spider optimization algorithm for tuning parameters in PD-like Interval Type-2 Fuzzy Logic Controller applied to a parallel robot. Meas. Control (United Kingdom) 54(3–4), 303–323 (2021). https://doi.org/10.1177/0020294021997483

    Article  Google Scholar 

  32. Naderi, S.; Blondin, M.J.; Rezaie, B.: Optimizing an adaptive fuzzy logic controller of a 3-DOF helicopter with a modified PSO algorithm. Int. J. Dyn. Control 11(4), 1895–1913 (2023). https://doi.org/10.1007/s40435-022-01091-4

    Article  Google Scholar 

  33. Zarychta, S.; Balcerzak, M.; Denysenko, V.; Stefański, A.; Dąbrowski, A.; Lenci, S.: Optimization of the closed-loop controller of a discontinuous capsule drive using a neural network. Meccanica 58(2–3), 537–553 (2023). https://doi.org/10.1007/s11012-023-01639-4

    Article  Google Scholar 

  34. Shayanfar, H.; Gharehchopogh, F.S.: Farmland fertility: a new metaheuristic algorithm for solving continuous optimization problems. Appl. Soft Comput. J. 71(November), 728–746 (2018). https://doi.org/10.1016/j.asoc.2018.07.033

    Article  Google Scholar 

  35. Alzaqebah, A.; Aljarah, I.; Al-Kadi, O.; Damaševičius, R.: A modified grey wolf optimization algorithm for an intrusion detection system. Mathematics 10(6), 1–16 (2022). https://doi.org/10.3390/math10060999

    Article  Google Scholar 

  36. Razak Ramesh, N.H.A.; Ghazali, M.R.; Ahmad, M.A.: Sigmoid pid based adaptive safe experimentation dynamics algorithm of portable duodopa pump for parkinson’s disease patients. Bull. Electr. Eng. Inform. 10(2), 632–639 (2021). https://doi.org/10.11591/eei.v10i2.2542

    Article  Google Scholar 

  37. Chen, X. and Bai, H.: A Sigmoid-based car-following model to improve acceleration stability in traffic oscillation and following failure in free flow, no. Idm, 2023, [Online]. Available: http://arxiv.org/abs/2309.02456

  38. Ahmad, M.A. and Ismail, R.M.T.R.: A data-driven sigmoid-based PI controller for buck-converter powered DC motor. In: ISCAIE 2017 - 2017 IEEE Symp. Comput. Appl. Ind. Electron., pp. 81–86, 2017, https://doi.org/10.1109/ISCAIE.2017.8074954

  39. Ghazali, M.R.; Ahmad, M.A.; Raja Ismail, R.M.T.: Data-driven neuroendocrine-PID controller design for twin rotor MIMO system. J. Phys. Conf. Ser. 1529(4), 2–7 (2020). https://doi.org/10.1088/1742-6596/1529/4/042080

    Article  Google Scholar 

  40. Valikhani, M. and Sourkounis, C.: A brain emotional learning-based intelligent controller (BELBIC) for DFIG system. In: 2014 Int. Symp. Power Electron. Electr. Drives, Autom. Motion, SPEEDAM 2014, pp. 713–718, 2014. https://doi.org/10.1109/SPEEDAM.2014.6871951

  41. Ghazali, M.R., Ahmad, M.A., and Ishak, H.: A data-driven sigmoid-based secretion rate of neuroendocrine- pidcontrol for TRMS system. In: ISCAIE 2021 - IEEE 11th Symp. Comput. Appl. Ind. Electron., pp. 1–6, 2021. https://doi.org/10.1109/ISCAIE51753.2021.9431795

  42. Silva, J.; Aquino, R.; Ferreira, A.; Marques, D.: Deep brain emotional learning-based intelligent controller applied to an inverted pendulum system. J. Supercomput. 78(6), 8346–8366 (2022). https://doi.org/10.1007/s11227-021-04200-w

    Article  Google Scholar 

  43. Hu, M.; Lee, K.; Ahn, H.; Choi, A.; Kim, H.; You, K.: Stabilization and tracking of a quadrotor using modified sigmoid sliding mode control. Sensors 22(10), 1–14 (2022). https://doi.org/10.3390/s22103618

    Article  Google Scholar 

  44. Sobrinho, A.S.F.; Junior, F.G.: Type-1 fuzzy logic algorithm for low cost embedded systems. Comput. Electr. Eng. 88, 1–14 (2020). https://doi.org/10.1016/j.compeleceng.2020.106861

    Article  Google Scholar 

  45. Lotfy, A.; Kaveh, M.; Mosavi, M.R.; Rahmati, A.R.: An enhanced fuzzy controller based on improved genetic algorithm for speed control of DC motors. Analog Integr. Circ. Signal Process. 105(2), 141–155 (2020). https://doi.org/10.1007/s10470-020-01599-9

    Article  Google Scholar 

  46. Mohammed Eltoum, M.A.; Hussein, A.; Abido, M.A.: Hybrid Fuzzy Fractional-Order PID-Based Speed Control for Brushless DC Motor. Arab. J. Sci. Eng. 46(10), 9423–9435 (2021). https://doi.org/10.1007/s13369-020-05262-3

    Article  Google Scholar 

  47. Ahmad, M.A.; Tumari, M.Z.M.; Nasir, A.N.K.: Composite fuzzy logic control approach to a flexible joint manipulator. Int. J. Adv. Robot. Syst. (2013). https://doi.org/10.5772/52562

    Article  Google Scholar 

  48. Gad, A.G.: Particle swarm optimization algorithm and its applications: a systematic review. Arch Comput. Methods Eng. (2022). https://doi.org/10.1007/s11831-021-09694-4

    Article  MathSciNet  Google Scholar 

  49. Tharwat, A.; Schenck, W.: A conceptual and practical comparison of PSO-style optimization algorithms. Expert Syst. Appl. 167, 114430 (2021). https://doi.org/10.1016/j.eswa.2020.114430

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the Directorate General of Scientific Research and Technological Development (DGRSDT), Algeria.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samet Ahmed.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmed, S., Yahia, K. & Dimitri, L. Implementation of NonLinear Controller with Anti-Windup on Xilinx FPGA. Arab J Sci Eng (2024). https://doi.org/10.1007/s13369-024-08912-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13369-024-08912-y

Keywords

Navigation