Skip to main content
Log in

A mechatronic approach for ball screw drive system: modeling, control, and validation on an FPGA-based architecture

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

This paper presents a novel mechatronic approach to modeling, control design, and experimental validation of a two-axis high-accuracy ball screw drive system. At first, a general mathematical model is developed by the Lagrange’s equation of Motion to characterize the dynamic behaviors of all the variables for an N-degrees of freedom system that includes electric behavior of the DC motors. Thus, the model provides a general framework for the control algorithm design. A robust PD-hyperbolic–type control strategy is proposed based on the representation of a nonlinear dynamic model for the trajectory tracking that solves the problem of regulation and position control. The stability method of Lyapunov is applied; in addition, the asymptotic stability of an equilibrium point is analyzed for the closed-loop dynamic model. The proposed control law ensures the dynamic performance of the closed-loop signals and desired tracking precision. On the other hand, the description of a new and original FPGA-based programmable microprocessor design is introduced which consists of its own design approaches of a hardware/software architecture. Finally, based on a built prototype of a ball screw drive system, experimental tests and simulations with motion trajectory tracking are conducted to verify the proposed general mathematical model and the control law. Experimental results demonstrate an excellent tracking trajectory and desired precision performance, which validates the feasibility and effectiveness of the proposal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Aljasem K, Froehly L, Seifert A, Zappe H (2011) Scanning and tunable micro-optics for endoscopic optical coherence tomography. J Microelectron Syst 20(6):1462–1472. http://ieeexplore.ieee.org/document/6031791/

    Article  Google Scholar 

  2. Hu S, Sun D (2011) Transportation of biological cells with robot-tweezer manipulation system. In: 2011 IEEE International Conference on Robotics and Automation. http://ieeexplore.ieee.org/document/5979763/, pp 5997–6002

  3. Saketi P, Von Essen M, Mikczinski M, Heinemann S, Fatikow S, Kallio P (2012) A flexible microrobotic platform for handling microscale specimens of fibrous materials for microscopic studies. J Microbiol 248:163–171. https://doi.org/10.1111/j.1365-2818.2012.03660.x

    Article  Google Scholar 

  4. Chang W-T, Wu J-H (2016) An innovative optical-based method and automation system for rapid and non-destructive measurement of the web thickness of microdrills. Measurement 94:388–405. https://doi.org/10.1016/j.measurement.2016.07.071

    Article  Google Scholar 

  5. Holmes JL, Davis F, Collyer SD, Higson SPJ (2012) A new application of scanning electrochemical microscopy for the label- free interrogation of antibody-antigen interactions: part 2. Analytica Chimica Acta 741:1–8. https://doi.org/10.1016/j.aca.2012.07.004

    Article  Google Scholar 

  6. Sadeghi-Goughari M, Mojra A (2015) Intraoperative thermal imaging of brain tumors using a haptic-thermal robot with application in minimally invasive neurosurgery. Appl Therm Eng 91:600–610. https://doi.org/10.1016/j.applthermaleng.2015.08.032

    Article  Google Scholar 

  7. Hampai D, Liedl A, Cappuccio G, Capitolo E, Iannarelli M, Massussi M, Tucci S, Sardella R, Sciancalepore A, Polese C, Dabagov SB (2017) 2D-3D XRF elemental mapping of archeological samples. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 402: 274–277. https://doi.org/10.1016/j.nimb.2017.04.020

    Article  Google Scholar 

  8. Cocco D, Idir M, Morton D, Raimondi L, Zangrando M (2018) Advances in X-ray optics: from metrology characterization to wavefront sensing-based optimization of active optics. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment. https://doi.org/10.1016/j.nima.2018.03.026

    Article  Google Scholar 

  9. Cunico MWM (2013) Optimization of positioning system of FDM machine design using analytical approach. Rapid Prototyp J 19:114–152. https://doi.org/10.1108/13552541311312139

    Article  Google Scholar 

  10. Cunico MWM (2013) Design of an FDM positioning system and application of an error-cost multiobjective optimization approach. Rapid Prototyp J 19:344–352. https://doi.org/10.1108/RPJ-11-2011-0117

    Article  Google Scholar 

  11. Feng G-H, Pan Y-L (2012) Investigation of ball screw preload variation based on dynamic modeling of a preload adjustable feed-drive system and spectrum analysis of ball-nuts sensed vibration signals. Int J Mach Tools Manuf 52:85–96. https://doi.org/10.1016/j.ijmachtools.2011.09.008

    Article  Google Scholar 

  12. Wang D, Lu Y, Zhang T, Wang K, Rinoshika A (2015) Effect of stiffness of rolling joints on the dynamic characteristic of ball screw feed systems in a milling machine. Shock Vib:1–11. https://doi.org/10.1155/2015/697540

    Google Scholar 

  13. Li F, Jiang Y, Li T, Du Y (2017) An improved dynamic model of preloaded ball screw drives considering torque transmission and its application to frequency analysis. Adv Mech Eng 1687814017710580:9. https://doi.org/10.1177/1687814017710580

    Article  Google Scholar 

  14. Dong L, Tang WC (2014) Adaptive backstepping sliding mode control of flexible ball screw drives with time-varying parametric uncertainties and disturbances. ISA Trans 53:110–116. https://doi.org/10.1016/j.isatra.2013.08.009

    Article  MathSciNet  Google Scholar 

  15. Huang Y-C, Chen X-Y (2017) Investigation of a ball screw feed drive system based on dynamic modeling for motion control. Advances in Technology Innovation 2:29–33. http://ojs.imeti.org/index.php/AITI/article/view/272

    Google Scholar 

  16. Ansoategui I, Campa FJ (2017) Mechatronics of a ball screw drive using an N degrees of freedom dynamic model. Int J Adv Manuf Technol 93:1307–1318. https://doi.org/10.1007/s00170-017-0597-2

    Article  Google Scholar 

  17. Sun K, Mou S, Qiu J, Wang T, Gao H (2018) Adaptive fuzzy control for non-triangular structural stochastic switched nonlinear systems with full state constraints. IEEE Transactions on Fuzzy Systems:1–14. https://doi.org/10.1109/TFUZZ.2018.2883374

    Article  Google Scholar 

  18. Qiu J, Sun K, Wang T, Gao H (2019) Observer-based fuzzy adaptive event-triggered control for pure-feedback nonlinear systems with prescribed performance. IEEE Trans Fuzzy Syst, pp 1–11. https://doi.org/10.1109/TFUZZ.2019.2895560

  19. Maeda GJ, Sato K (2008) Practical control method for ultraprecision positioning using a ballscrew mechanism. Precis Eng 32:309–318. https://doi.org/10.1016/j.precisioneng.2007.10.002

    Article  Google Scholar 

  20. Qiu Z-C (2012) Adaptive nonlinear vibration control of a Cartesian flexible manipulator driven by a ballscrew mechanism. Mech Syst Sig Process 30:248–266. https://doi.org/10.1016/j.ymssp.2012.01.002

    Article  Google Scholar 

  21. Xiao S, Li Y (2013) Optimal design, fabrication, and control of an XY Micropositioning stage driven by electromagnetic actuators. IEEE Trans Ind Electron 60:4613–4626. https://ieeexplore.ieee.org/document/6244873

    Article  Google Scholar 

  22. Dong L, Tang WC (2014) Adaptive backstepping sliding mode control of flexible ball screw drives with time-varying parametric uncertainties and disturbances. ISA Trans 53:110–116. https://doi.org/10.1016/j.isatra.2013.08.009

    Article  MathSciNet  Google Scholar 

  23. Rajabi N, Abolmasoumi AH, Soleymani M (2017) Sliding mode trajectory tracking control of a ball-screw-driven shake table based on online state estimations using EKF/UKF. Struct Control Health Monit 25:1545–2255. https://doi.org/10.1002/stc.2133

    Article  Google Scholar 

  24. Park S-C, Lee J-M, Han S-I (2018) Tracking error constrained terminal sliding mode control for ball-screw driven motion systems with state observer. Int. J. Precis. Eng. Manuf 19:359–366. https://doi.org/10.1007/s12541-018-0043-x

    Article  Google Scholar 

  25. Gutiérrez-Frias OO, Martínez-García JC, Moctezuma RAG (2009) PD control for vibration attenuation in a physical pendulum with moving mass. Math Probl Eng, pp 11. https://doi.org/10.1155/2009/179724

    Article  Google Scholar 

  26. Carrillo-Serrano RV, Hernández-Guzmán VM, Santibáñez V (2010) PD control with feedforward compensation for rigid robots actuated by brushless DC motors. Robotica 29:507–514. https://doi.org/10.1017/S0263574710000329

    Article  Google Scholar 

  27. Chowdhury AR, Panda SK (2015) Brain-map based carangiform swimming behaviour modeling and control in a robotic fish underwater vehicle. Int J Adv Robot Syst 12:52–65. https://doi.org/10.5772/60085

    Article  Google Scholar 

  28. Chowdhury AR, Sasidhar S, Panda SK (2016) Bio-harmonized control experiments of a carangiform robotic fish underwater vehicle. Adv Robot 30:338–351. https://doi.org/10.1080/01691864.2015.1114905

    Article  Google Scholar 

  29. Reyes-Cortés F, Chávez-Olivares C, González-Galván EJ (2018) A family of hyperbolic-type explicit force regulators with active velocity damping for robot manipulators. J Robot 2018:1–15. https://doi.org/10.1155/2018/9324623

    Article  Google Scholar 

  30. Amornwongpeeti S, Ekpanyapong M, Chayopitak N, Monteiro JL, Martins JS, Afonso JL (2015) A single chip FPGA-based solution for controlling of multi-unit PMSM motor with time-division multiplexing scheme. Microprocess Microsyst 39:621–633. https://doi.org/10.1016/j.micpro.2015.08.011

    Article  Google Scholar 

  31. Alabdo A, Pérez J, Garcia GJ, Pomares J, Torres F (2016) FPGA-based architecture for direct visual control robotic systems. Mechatronics 39:204–216. https://doi.org/10.1016/j.mechatronics.2016.05.008

    Article  Google Scholar 

  32. Dong J, Wang T, Li B, Liu Z, Yu Z (2017) An FPGA-based low-cost VLIW floating-point processor for CNC applications. Microprocess Microsyst 50:14–25. https://doi.org/10.1016/j.micpro.2017.02.001

    Article  Google Scholar 

  33. Beghi A, Marcuzzi F, Martin P, Tinazzi F, Zigliotto M (2017) Virtual prototyping of embedded control software in mechatronic systems: a case study. Mechatronics 43:99–111. https://doi.org/10.1016/j.mechatronics.2017.03.004

    Article  Google Scholar 

  34. Martinez-Prado M, Franco-Gasca A, Herrera-Ruiz G, Soto-Dorantes O (2013) Multi-axis motion controller for robotic applications implemented on an FPGA. Int J Adv Manuf Technol 67:2367–2376. https://doi.org/10.1007/s00170-012-4656-4

    Article  Google Scholar 

  35. Muresan CI, Folea S, Mois G, Dulf EH (2013) Development and implementation of an FPGA based fractional order controller for a DC motor. Mechatronics 23:798–804. https://doi.org/10.1016/j.mechatronics.2013.04.001

    Article  Google Scholar 

  36. Khubalkar SW, Junghare AS, Aware MV, Chopade AS, Das S (2018) Demonstrative fractional order - PID controller based DC motor drive on digital platform. ISA Trans 82:79–93. https://doi.org/10.1016/j.isatra.2017.08.019

    Article  Google Scholar 

  37. Ponce P, Molina A, Bastida H, MacCleery B (2015) Real-time hardware ANN-QFT robust controller for reconfigurable micro-machine tool. Int J Adv Manuf Technol 79:1–20. https://doi.org/10.1007/s00170-014-6710-x

    Article  Google Scholar 

  38. Vyas S, Gupte A, Gill CD, Cytron RK, Zambreno J, Jones PH (2013) Hardware architectural support for control systems and sensor processing. ACM Trans Embed Comput Syst 13:16. https://doi.org/10.1145/2514641.2514643

    Article  Google Scholar 

  39. Sampaio RC, Motta JMST, Llanos CH (2017) An FPGA-based controller design for a five degrees of freedom robot for repairing hydraulic turbine blades. J Braz Soc Mech Sci Eng 39:3121–3136. https://doi.org/10.1007/s40430-017-0814-9

    Article  Google Scholar 

  40. Kung Y-S, Than H, Chuang T-Y (2018) FPGA realization of a self-tuning PID controller for X-Y table with RBF neural network identification. Microsyst Technol 24:243–253. https://doi.org/10.1007/s00542-016-3248-x

    Article  Google Scholar 

  41. Huang H-C, Tsai C-C (2009) FPGA implementation of an embedded robust adaptive controller for autonomous omnidirectional mobile platform. IEEE Trans Ind Electron 56:1604–1616. https://doi.org/10.1109/TIE.2008.2009524

    Article  Google Scholar 

  42. Hajduk Z, Trybus B, Sadolewski J (2015) Architecture of FPGA embedded multiprocessor programmable controller. IEEE Trans Ind Electron 62:2952–2961. https://doi.org/10.1109/TIE.2014.2362888

    Article  Google Scholar 

  43. Zhao C, Mei K, Zheng N (2014) Design of write merging and read prefetching buffer in DRAM controller for embedded processor. Microprocess Microsyst 38:451–457. https://doi.org/10.1016/j.micpro.2014.03.010

    Article  Google Scholar 

  44. Dadalau A, Mottahedi M, Groh K, Verl A (2010) Parametric modeling of ball screw spindles. Prod Eng Res Devel 4:625–631. https://doi.org/10.1007/s11740-010-0264-z

    Article  Google Scholar 

  45. Fabien B (2009) Lagrange’s equation of motion. Analytical system dynamics. Springer, Boston. https://doi.org/10.1007/978-0-387-85605-6_3

    Google Scholar 

  46. Fernando R, Jaime C, Miguel AL, Manuel C (2012) Square root type-control for robot manipulators. Int J Adv Robotic Sy Meas 9:1–8. https://doi.org/10.5772/52500

    Article  Google Scholar 

  47. Khalil HK (1996) Nonlinear systems. Prentice Hall, New Jersey

    Google Scholar 

Download references

Acknowledgments

This project was partially supported by FCE-BUAP (Benemérita Universidad Autónoma de Puebla) and by CONACYT). The authors wish to thank the editor and the reviewers for their valuable comments and insightful suggestions, which helped to improve this paper. The authors would also like to thank Miss Aurora Vergara-Vargas at ARPA-BUAP for her valuable revision of the language of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Vargas-Treviño.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vargas-Treviño, M.A., Lopez-Gomez, J., Vergara-Limon, S. et al. A mechatronic approach for ball screw drive system: modeling, control, and validation on an FPGA-based architecture. Int J Adv Manuf Technol 104, 2329–2346 (2019). https://doi.org/10.1007/s00170-019-03945-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-019-03945-2

Keywords

Navigation