Skip to main content
Log in

Production and Optimization of Hydroxy and Methyl Phenolic Compounds Through Microwave-Assisted Catalytic Hydrogenolysis from Lignin Valorization

  • Research Article-Chemical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

The phenol-based antioxidants as free radical scavengers are expected to continue increasing as additives in industries. As an antioxidant, lignin has low oxidative stability in pure solid form, so stabilization is needed to produce lignin-based antioxidants. This research focuses on the valorization of alkaline lignin by hydrogenolysis using a Pt/C catalyst and formic acid as a hydrogen donor. Three treatment variables, namely the amount of formic acid (FA), the amount of ethanol (EtOH), and radiation time (T), were observed for their contribution to the three responses, namely the total phenol content (TPC), the degree of depolymerization (DD), and the IC50 value of DPPH as an antioxidants activity. This study found that the best results were obtained at operating conditions FA, EtOH, and T 5 mL, 100 mL, 3 min in sequence, producing TPC, DD, and IC50 worth 4792,055 mg/ L, 23.650%, and 35.860 mg/L, respectively. The results were optimized using the response surface methodology with the Design Expert 11 program with the optimized result being FA, EtOH, and T 10 mL, 100 mL, 3 min consecutively and resulted in TPC, DD, and IC50 of 4987.12 mg/L, 26.451%, and 33.865 mg/L, respectively. The results of this study indicate that OPFEB is a source of lignin that has the potential to produce phenolic compounds, which are sources of renewable fine chemicals based on biomass.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Availability of Data and Materials

Availability of data and materials is not applicable.

References

  1. Rahayu, D.; Karnaningroem, N.; Altway, A.; Slamet, A.: Utilization of oil palm empty fruit bunches biomass through slow pyrolysis process. IOP Conf. Ser. Earth Environ. Sci. 913(1), 012018 (2021). https://doi.org/10.1088/1755-1315/913/1/012018

    Article  Google Scholar 

  2. Central statistics agency (BPS) (2021). Indonesian oil palm statistics 2021. [Online] Available: https://www.bps.go.id/publication/2022/11/30/254ee6bd32104c00437a4a61/statistik-kelapa-sawit-indonesia-2021.html

  3. Dewanti, D.P.: Potensi Selulosa dari Limbah Tandan Kosong Kelapa Sawit untuk Bahan Baku Bioplastik Ramah Lingkungan Cellulose potential of empty fruit bunches waste as the raw material of bioplastics environmentally friendly. J. Teknol. Lingkungan (2018). https://doi.org/10.29122/jtl.v19i1.2644

  4. Mohtar, S.S.; Busu, T.N.Z.T.M.; Noor, A.M.M.; Shaari, N.; Mat, H.: An ionic liquid treatment and fractionation of cellulose, hemicellulose and lignin from oil palm empty fruit bunch. Carbohyd. Polym. 166, 291–299 (2017). https://doi.org/10.1016/j.carbpol.2017.02.102

    Article  Google Scholar 

  5. Gozan, M.; Panjaitan, J.R.; Tristantini, D.; Alamsyah, R.; Yoo, Y.J.: Evaluation of separate and simultaneous kinetic parameters for levulinic acid and furfural production from pretreated palm oil empty fruit bunches. Int. J. Chem. Eng. (2018). https://doi.org/10.1155/2018/1920180

    Article  Google Scholar 

  6. Pizzi, A.: Recent developments in eco-efficient bio-based adhesives for wood bonding: opportunities and issues. J. Adhes. Sci. Technol. 20(8), 829–846 (2006). https://doi.org/10.1163/156856106777638635

    Article  Google Scholar 

  7. Hu, L.; Pan, H.; Zhou, Y.; Zhang, M.: Methods to improve lignin’s reactivity as a phenol substitute and as replacement for other phenolic compounds: a brief review. BioResources 6(3), 3515–3525 (2011)

    Article  Google Scholar 

  8. Mankar, S., Chaudhari, A., Soni, I.: "Lignin in phenol-formaldehyde adhesives". Int. J. Knowl. Eng., ISSN, pp. 0976–5816, 2012

  9. Rowell, R.M.: Handbook of wood chemistry and wood composites. CRC Press (2012). https://doi.org/10.1201/b12487

    Article  Google Scholar 

  10. Ang, A.F.; Ashaari, Z.; Lee, S.H.; Tahir, P.M.; Halis, R.: Lignin-based copolymer adhesives for composite wood panels—a review. Int. J. Adhes. Adhes. 95, 102408 (2019). https://doi.org/10.1016/j.ijadhadh.2019.102408

    Article  Google Scholar 

  11. Dizhbite, T.; Telysheva, G.; Jurkjane, V.; Viesturs, U.: Characterization of the radical scavenging activity of lignins––natural antioxidants. Biores. Technol. 95(3), 309–317 (2004). https://doi.org/10.1016/j.biortech.2004.02.024

    Article  Google Scholar 

  12. Pan, X.; Kadla, J.F.; Ehara, K.; Gilkes, N.; Saddler, J.N.: Organosolv ethanol lignin from hybrid poplar as a radical scavenger: relationship between lignin structure, extraction conditions, and antioxidant activity. J. Agric. Food Chem. 54(16), 5806–5813 (2006). https://doi.org/10.1021/jf0605392

    Article  Google Scholar 

  13. Sun, S.-L.; Wen, J.-L.; Ma, M.-G.; Sun, R.-C.; Jones, G.L.: Structural features and antioxidant activities of degraded lignins from steam exploded bamboo stem. Ind. Crops Prod. 56, 128–136 (2014). https://doi.org/10.1016/j.indcrop.2014.02.031

    Article  Google Scholar 

  14. Chen, K.; Ye, D.; Gu, S.; Zhou, Y.: Thermal-oxidative effect of kraft lignin antioxidant in polypropylene: uncovering the key factor using correlation analysis model. Int. J. Biol. Macromol. 107, 478–485 (2018). https://doi.org/10.1016/j.ijbiomac.2017.09.016

    Article  Google Scholar 

  15. Gosslink, R.; De Jong, E.; Guran, B.; Abacherli, A.: Co-ordination network for lignin-standardisation, production and applications adapted to market requirements. Ind. Crops Prod. 20, 121–129 (2004). https://doi.org/10.1016/j.indcrop.2004.04.015

    Article  Google Scholar 

  16. Piccinino, D.; Capecchi, E.; Tomaino, E.; Gabellone, S.; Gigli, V.; Avitabile, D.; Saladino, R.: Nano-structured lignin as green antioxidant and UV shielding ingredient for sunscreen applications. Antioxidants 10(2), 274 (2021). https://doi.org/10.3390/antiox10020274

    Article  Google Scholar 

  17. Harahap, A.F.P.; Gozan, M.: Utilization of lignin as natural antioxidant for biodiesel. AIP Conf. Proc. (2018). https://doi.org/10.1063/1.5064310

    Article  Google Scholar 

  18. Harahap, A.F.; Rahman, A.A.; Sadrina, I.N.; Gozan, M.: Optimization of pretreatment conditions for microwave-assisted alkaline delignification of empty fruit bunch by response surface methodology. Optimization (2019). https://doi.org/10.14716/ijtech.v10i8.3431

    Article  Google Scholar 

  19. Zhao, L.; Ouyang, X.; Ma, G.; Qian, Y.; Qiu, X.; Ruan, T.: Improving antioxidant activity of lignin by hydrogenolysis. Indus. Crops Prod. 1(125), 228–235 (2018). https://doi.org/10.1016/j.indcrop.2018.09.002

    Article  Google Scholar 

  20. Brand-Williams, W.; Cuvelier, M.-E.; Berset, C.: Use of a free radical method to evaluate antioxidant activity. LWT-Food Sci. Technol. 28(1), 25–30 (1995). https://doi.org/10.1016/S0023-6438(95)80008-5

    Article  Google Scholar 

  21. Singleton, V. L., Orthofer, R., Lamuela-Raventós, R. M.: "[14] Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent". In: Methods in enzymology, vol. 299: Academic Press, 1999, pp. 152–178. https://doi.org/10.1016/S0076-6879(99)99017-1

  22. Khan, R.J.; Lau, C.Y.; Guan, J.; Lam, C.H.; Zhao, J.; Ji, Y.; Wang, H.; Xu, J.; Lee, D.J.; Leu, S.Y.: Recent advances of lignin valorization techniques toward sustainable aromatics and potential benchmarks to fossil refinery products. Biores. Technol. 346, 126419 (2022). https://doi.org/10.1016/j.biortech.2021.126419

    Article  Google Scholar 

  23. Ye, K.; Liu, Y.; Wu, S.; Zhuang, J.: A review for lignin valorization: challenges and perspectives in catalytic hydrogenolysis. Ind. Crops Prod. 172, 114008 (2021). https://doi.org/10.1016/j.indcrop.2021.114008

    Article  Google Scholar 

  24. Milovanovic, J.; Rajic, N.; Romero, A.A.; Li, H.; Shih, K.; Tschentscher, R.; Luque, R.: Insights into the microwave-assisted mild deconstruction of lignin feedstocks using NiO-containing ZSM-5 zeolites. ACS Sustain. Chem. Eng. 4(8), 4305–4313 (2016)

    Article  Google Scholar 

  25. Conde, E.; Cara, C.; Moure, A.; Ruiz, E.; Castro, E.; Domínguez, H.: Antioxidant activity of the phenolic compounds released by hydrothermal treatments of olive tree pruning. Food Chem. 114(3), 806–812 (2009). https://doi.org/10.1016/j.foodchem.2008.10.017

    Article  Google Scholar 

  26. Gordobil, O.; Herrera, R.; Yahyaoui, M.; İlk, S.; Kaya, M.; Labidi, J.: Potential use of kraft and organosolv lignins as a natural additive for healthcare products. RSC Adv. 8(43), 24525–24533 (2018). https://doi.org/10.1039/C8RA02255K

    Article  Google Scholar 

  27. Gordobil, O.; Olaizola, P.; Banales, J.M.; Labidi, J.: Lignins from agroindustrial by-products as natural ingredients for cosmetics: chemical structure and in vitro sunscreen and cytotoxic activities. Molecules 25(5), 1131 (2020). https://doi.org/10.3390/molecules25051131

    Article  Google Scholar 

  28. Gordobil, O.; Oberemko, A.; Saulis, G.; Baublys, V.; Labidi, J.: In vitro cytotoxicity studies of industrial Eucalyptus kraft lignins on mouse hepatoma, melanoma and Chinese hamster ovary cells. Int. J. Biol. Macromol. 135, 353–361 (2019). https://doi.org/10.1016/j.ijbiomac.2019.05.111

    Article  Google Scholar 

  29. de Menezes, N.I.; Avelino, F.; de Oliveira, D.R.; Souza, N.F.; Rosa, M.F.; Mazzetto, S.E.; Lomonaco, D.: Organic solvent fractionation of acetosolv palm oil lignin: the role of its structure on the antioxidant activity. Int. J. Biol. Macromol. 1(122), 1163–1172 (2019). https://doi.org/10.1016/j.ijbiomac.2018.09.066

    Article  Google Scholar 

  30. Tavares, D.; Cavali, M.; Tanobe, V.O.A.; Torres, L.A.Z.; Rozendo, A.S.; Filho, A.Z.; Soccol, C.R.; Woiciechowski, A.L.: Lignin from residual sawdust of Eucalyptus spp.—isolation, characterization, and evaluation of the antioxidant properties. Biomass 2(3), 195–208 (2022). https://doi.org/10.3390/biomass2030013

    Article  Google Scholar 

  31. Li, Z.; Zhang, J.; Qin, L.; Ge, Y.: Enhancing antioxidant performance of lignin by enzymatic treatment with laccase. ACS Sustain. Chem. Eng. 6(2), 2591–2595 (2018). https://doi.org/10.1021/acssuschemeng.7b04070

    Article  Google Scholar 

  32. Matuszewska, A.; Jaszek, M.; Stefaniuk, D.; Ciszewski, T.; Matuszewski, Ł: Anticancer, antioxidant, and antibacterial activities of low molecular weight bioactive subfractions isolated from cultures of wood degrading fungus Cerrena unicolor. PLoS ONE 13(6), e0197044 (2018). https://doi.org/10.1371/journal.pone.0197044

    Article  Google Scholar 

  33. Litwinienko, G.; Ingold, K.: Solvent effects on the rates and mechanisms of reaction of phenols with free radicals. Acc. Chem. Res. 40(3), 222–230 (2007). https://doi.org/10.1021/ar0682029

    Article  Google Scholar 

  34. Craft, B.D.; Kerrihard, A.L.; Amarowicz, R.; Pegg, R.B.: Phenol-based antioxidants and the in vitro methods used for their assessment. Compr. Rev. Food Sci. Food Saf. 11(2), 148–173 (2012). https://doi.org/10.1111/j.1541-4337.2011.00173.x

    Article  Google Scholar 

  35. Ansaloni, S.; Russo, N.; Pirone, R.: Wet air oxidation of industrial lignin case study: influence of the dissolution pretreatment and perovskite-type oxides. Waste Biomass Valoriz. 9, 2165–2179 (2018). https://doi.org/10.1007/s12649-017-9947-4

    Article  Google Scholar 

  36. Shao, L.; Wang, C.; Liu, Y.; Wang, M.; Wang, L.; Xu, F.: Efficient depolymerization of lignin through microwave-assisted Ru/C catalyst cooperated with metal chloride in methanol/formic acid media. Front. Bioeng. Biotechnol. 16(10), 1082341 (2022). https://doi.org/10.3389/fbioe.2022.1082341

    Article  Google Scholar 

  37. Dhar, P.; Vinu, R.: Microwave-assisted catalytic solvolysis of lignin to phenols: kinetics and product characterization. ACS Omega 3(11), 15076–15085 (2018). https://doi.org/10.1021/acsomega.8b01509

    Article  Google Scholar 

  38. Nammalwar, B.; Bunce, R.A.; Berlin, K.D.; Bourne, C.R.; Bourne, P.C.; Barrow, E.W.; Barrow, W.W.: Approaches to iodinated derivatives of vanillin and isovanillin. Org. Prep. Proced. Int. 44(2), 146–152 (2012). https://doi.org/10.1080/00304948.2012.643700

    Article  Google Scholar 

  39. Rodrigues Pinto, P.C.; Borges da Silva, E.A.; Rodrigues, A.E.: Lignin as source of fine chemicals: vanillin and syringaldehyde. Biomass Convers. Interface Biotechnol. Chem. Mater. Sci. 1, 1 (2012)

    Google Scholar 

  40. Baker, C.J.; Mock, N.M.; Whitaker, B.D.; Roberts, D.P.; Rice, C.P.; Deahl, K.L.; Averyanov, A.A.: Involvement of acetosyringone in plant—pathogen recognition. Biochem. Biophys. Res. Commun. 328(1), 130–136 (2005). https://doi.org/10.1016/j.bbrc.2004.12.153

    Article  Google Scholar 

  41. Shi, Y.; Chai, L.; Tang, C.; Yang, Z.; Zheng, Y.; Chen, Y.; Jing, Q.: Biochemical investigation of kraft lignin degradation by Pandoraea sp. B-6 isolated from bamboo slips. Bioprocess Biosyst. Eng. 36, 1957–1965 (2013). https://doi.org/10.1007/s00449-013-0972-9

    Article  Google Scholar 

  42. de Armas-Ricard, M.; Ruiz-Reyes, E.; Ramírez-Rodríguez, O.: Caffeates and caffeamides: synthetic methodologies and their antioxidant properties. Int. J. Med. Chem. (2019). https://doi.org/10.1155/2019/2592609

    Article  Google Scholar 

  43. Chen, I.-S.; Lin, Y.C.; Tsai, I.L.; Teng, C.M.; Ko, F.N.; Ishikawa, T.; Ishii, H.: Coumarins and anti-platelet aggregation constituents from Zanthoxylum schinifolium. Phytochemistry 39(5), 1091–1097 (1995). https://doi.org/10.1016/0031-9422(95)00054-B

    Article  Google Scholar 

  44. Bayati, S.; Yazdanparast, R.: Antioxidant and free radical scavenging potential of yakuchinone B derivatives in reduction of lipofuscin formation using H2O2-treated neuroblastoma cells. Iran. Biomed. J. 15(4), 134 (2011). https://doi.org/10.6091/ibj.1010.2012

    Article  Google Scholar 

  45. Roy, M.; Chakraborty, S.; Siddiqi, M.; Bhattacharya, R.K.: Induction of apoptosis in tumor cells by natural phenolic compounds. Asian Pac. J. Cancer Prev. 3(1), 61–67 (2002)

    Google Scholar 

  46. Razgonova, M.; Zakharenko, A.; Pikula, K.; Kim, E.; Chernyshev, V.; Ercisli, S.; Cravotto, G.; Golokhvast, K.: Rapid mass spectrometric study of a supercritical CO2-extract from woody liana Schisandra chinensis by HPLC-SPD-ESI-MS/MS. Molecules 25(11), 2689 (2020). https://doi.org/10.3390/molecules25112689

    Article  Google Scholar 

  47. Kim, H.W.; Shin, J.H.; Lee, M.K.; Jang, G.H.; Lee, S.H.; Jang, H.H.; Jeong, S.T.; Kim, J.B.: Qualitative and quantitative analysis of dibenzocyclooctadiene lignans for the fruits of Korean. Korean J. Med. Crop Sci. 23(5), 385–394 (2015). https://doi.org/10.7783/KJMCS.2015.23.5.385

    Article  Google Scholar 

  48. Zhu, G.; Ouyang, X.; Yang, Y.; Ruan, T.; Qiu, X.: Selective cleavage of aryl ether bonds in dimeric lignin model compounds. RSC Adv. 6(22), 17880–17887 (2016). https://doi.org/10.1039/C5RA26235F

    Article  Google Scholar 

  49. Tripathi, M.; Bhatnagar, A.; Mubarak, N.M.; Sahu, J.N.; Ganesan, P.: RSM optimization of microwave pyrolysis parameters to produce OPS char with high yield and large BET surface area. Fuel 277, 118184 (2020). https://doi.org/10.1016/j.fuel.2020.118184

    Article  Google Scholar 

  50. Cao, N.; Chen, Y.; Lu, K.; Wu, C.; Abudila, B.; Li, J.; Liu, C.L.; Dong, W.S.: Selective hydrogenolysis of 5-hydroxymethylfurfural to 2, 5-dimethylfuran with ethanol as a hydrogen donor over β-Mo 2 C embedded in carbon microspheres. Sustain. Energy Fuels 5(18), 4749–4757 (2021). https://doi.org/10.1039/D1SE00499A

    Article  Google Scholar 

  51. He, Y.; Deng, L.; Lee, Y.; Li, K.; Lee, J.M.: A review on the critical role of H2 donor in the selective hydrogenation of 5-hydroxymethylfurfural. Chem. Sus. Chem. 15(13), e202200232 (2022). https://doi.org/10.1002/cssc.202200232

    Article  Google Scholar 

  52. Ouyang, X.; Huang, X.; Zhu, Y.; Qiu, X.: Ethanol-enhanced liquefaction of lignin with formic acid as an in situ hydrogen donor. Energy Fuels 29(9), 5835–5840 (2015). https://doi.org/10.1021/acs.energyfuels.5b01127

    Article  Google Scholar 

  53. Gupta, B.S.; Ako, J.E.: Application of guar gum as a flocculant aid in food processing and potable water treatment. Eur. Food Res. Technol. 221(6), 746–751 (2005). https://doi.org/10.1007/s00217-005-0056-4

    Article  Google Scholar 

  54. Ramakrishna, G.; Susmita, M.: Application of response surface methodology for optimization of Cr (III) and Cr (VI) adsorption on commercial activated carbons. Res. J. Chem. Sci. 2231, 606X (2012)

    Google Scholar 

Download references

Acknowledgements

The authors thank Talent Management of the National Research and Innovation Agency (BRIN) for supporting the first author in the Post-Doctoral Research Program. The authors also acknowledge the facilities and scientific and technical support from the National Research and Innovation Agency through e-Layanan Sains, Badan Riset dan Inovasi Nasional.

Funding

This research was supported by the National Research and Innovation Agency of Indonesia and Indonesia Endowment Fund for Education financial support through the research grant “Riset Inovasi untuk Indonesia Maju” (RIIM) 2022 (contract number: 97/IV/KS/11/2022). The authors also gratefully acknowledged the financial support for publication by the National Research and Innovation Agency financial support through the research grant “Rumah program Energi Terbarukan Organisasi Riset Energi dan Manufaktur” (RP ET OREM) 2023. (Contract number: 13/III.3/HK/2022).

Author information

Authors and Affiliations

Authors

Contributions

M.A Darmawan, M.Y.A Ramadhan, and M. Gozan are the main contributors who conceptualized, designed, and wrote this work. H. Hidayat and Muryanto supported obtaining the lignin extraction data from OPFEB. N. Amir and H. Heriyanto supported the production of phenolic compounds. H. Saputra and S.D.S Murti supported the interpretation and analysis of the data. T.S Utami supported for statistical analysis.

Corresponding author

Correspondence to Misri Gozan.

Ethics declarations

Competing interest

The authors declare no competing interest.

Ethical Approval

This article does not contain any studies with human or animal participants.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (DOCX 1023 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Darmawan, M.A., Ramadhan, M.Y.A., Saputra, H. et al. Production and Optimization of Hydroxy and Methyl Phenolic Compounds Through Microwave-Assisted Catalytic Hydrogenolysis from Lignin Valorization. Arab J Sci Eng 49, 8425–8441 (2024). https://doi.org/10.1007/s13369-024-08897-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-024-08897-8

Keywords

Navigation