Skip to main content

Advertisement

Log in

Wet Air Oxidation of Industrial Lignin Case Study: Influence of the Dissolution Pretreatment and Perovskite-type Oxides

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

Wet air oxidation (WAO) of lignocellulosic biomasses is a promising route for the production of renewable and valuable compounds, involving air as primary oxidant and mild reaction temperatures. In this work, an industrial residue of bioethanol production, steam exploded lignin derived from wheat straw, undergoes a WAO process with the aim to achieve more insights on the process performances in terms of potential yields of aromatic compounds and carboxylic acids (CAs). The experiments were carried out in a pressurized 50 ml batch reactor loaded with water or other aqueous solutions as solvent, the standard conditions were 150 °C of temperature, 20 bar of initial air pressure and 2 h. Afterwards, several solvothermal pretreatments were applied in order to depolymerize and solubilize lignin under inert atmosphere; the residues-free solutions obtained in this way were used as substrate for the WAO reaction. The choice of the pretreatment temperature, solvent alkalinity and presence of perovskite catalysts were evaluated with regard to the mass yields of resulting aromatic compounds and CAs, their carbon content, and the products distribution. Best performance exhibits a lignin dissolution ratio of 53% with 1.3% of yield towards aromatic compounds, where vanillin is the principal product (59.1%), but also the 32% of yield in CAs with glycolic acid as major product (40.9%).

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Huber, G.W., Iborra, S., Corma, A.: Synthesis of transportation fuels from biomass: chemistry, catalysts, and engineering. Chem. Rev. 106, 4044–4098 (2006)

    Article  Google Scholar 

  2. Corma Canos, A., Iborra, S., Velty, A.: Chemical routes for the transformation of biomass into chemicals. Chem. Rev. 107, 2411–2502 (2007)

    Article  Google Scholar 

  3. Isikgor, F.H., Remzi Becer, C.: Lignocellulosic Biomass: a sustainable platform for production of bio-based chemicals and polymers. Polym. Chem. 6, 4497–4559 (2015)

    Article  Google Scholar 

  4. Heitner, C., Dimmel, D., Schmidt, J.: Lignin and Lignans: Advances in chemistry. CRC Press (2010)

  5. Doherty, W.O.S., Mousavioun, P., Fellows, C.M.: Value-adding to cellulosic ethanol: lignin polymers. Ind. Crops Prod. 33, 259–276 (2011)

    Article  Google Scholar 

  6. Cherubini, F.: The biorefinery concept: Using biomass instead of oil for producing energy and chemicals. Energy Convers. Manag. 51, 1412–1421 (2010)

    Article  Google Scholar 

  7. Sun, Y., Cheng, J.: Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresour. Technol. 83, 1–11 (2002)

    Article  Google Scholar 

  8. Sánchez, Ó.J., Cardona, C.A.: Trends in biotechnological production of fuel ethanol from different feedstocks. Bioresour. Technol. 99, 5270–5295 (2008)

    Article  Google Scholar 

  9. Ma, R., Xu, Y., Zhang, X.: Catalytic oxidation of biorefinery lignin to value-added chemicals to support sustainable biofuel production. ChemSusChem 8, 24–51 (2015)

    Article  Google Scholar 

  10. Gosselink, R.J.A., De Jong, E., Guran, B., Abächerli, A.: Co-ordination network for lignin—Standardisation, production and applications adapted to market requirements (EUROLIGNIN). Ind. Crops Prod. 20, 121–129 (2004)

    Article  Google Scholar 

  11. Zakzeski, J., Bruijnincx, P.C.A., Jongerius, A.L., Weckhuysen, B.M.: The catalytic valorization of lignin for the production of renewable chemicals. Chem. Rev. 110, 3552–3599 (2010)

    Article  Google Scholar 

  12. Lange, H., Decina, S., Crestini, C.: Oxidative upgrade of lignin—Recent routes reviewed. Eur. Polym. J. 49, 1151–1173 (2013)

    Article  Google Scholar 

  13. Laskar, D.D., Yang, B., Wang, H., Lee, J.: Pathways for biomass-derived lignin to hydrocarbon fuels. Biofuels Bioprod. Biorefining 7, 602–626 (2013)

    Article  Google Scholar 

  14. Fache, M., Boutevin, B., Caillol, S.: Vanillin production from lignin and its use as a renewable chemical. ACS Sustain. Chem. Eng. 4, 35–46 (2016)

    Article  Google Scholar 

  15. Sales, F.G., Maranhão, L.C.A., Lima Filho, N.M., Abreu, C.A.M.: Kinetic evaluation and modeling of lignin catalytic wet oxidation to selective production of aromatic aldehydes. Ind. Eng. Chem. Res. 45, 6627–6631 (2006)

    Article  Google Scholar 

  16. Phyllis2 database for biomass and waste., Energy research center of the Netherlands.

  17. Stewart, D.: Lignin as a base material for materials applications: chemistry, application and economics. Ind. Crops Prod. 27, 202–207 (2008)

    Article  Google Scholar 

  18. Belitz, H.-D., Grosch, W., Schieberle, P.: Food Chemistry. Springer Berlin Heidelberg, Berlin (2004)

    Book  Google Scholar 

  19. Lochab, B., Shukla, S., Varma, I.K.: Naturally occurring phenolic sources: monomers and polymers. RSC Adv. 4, 21712 (2014)

    Article  Google Scholar 

  20. Niemelä, K., Alén, R., Sjöström, E.: The formation of carboxylic acids during kraft and kraft-anthraquinone pulping of birch wood. Holzforschung 39, 167–172 (1985)

    Article  Google Scholar 

  21. Ma, R., Guo, M., Zhang, X.: Selective conversion of biorefinery lignin into dicarboxylic acids. ChemSusChem. 7, 412–415 (2014)

    Article  Google Scholar 

  22. Sato, K., Aoki, M., Noyori, R.: REPORTS A “Green” route to adipic acid†¯: direct oxidation of cyclohexenes with 30 percent hydrogen peroxide onset of catalytic activity of gold clusters on titania with the appearance of nonmetallic properties. Science. 281, 1646–1648 (1998)

    Article  Google Scholar 

  23. Yao, K., Tang, C.: Controlled polymerization of next-generation renewable monomers and beyond. Macromolecules 46, 1689–1712 (2013)

    Article  Google Scholar 

  24. Bernardi, M., Deorsola, F.A., Fino, D., Russo, N.: Catalytic wet air oxidation of maleic acid over lanthanum-based perovskites synthesized by solution combustion synthesis. Waste Biomass Valorization 5, 857–863 (2014)

    Article  Google Scholar 

  25. Kim, K.H., Ihm, S.K.: Heterogeneous catalytic wet air oxidation of refractory organic pollutants in industrial wastewaters: a review. J. Hazard. Mater. 186, 16–34 (2011)

    Article  Google Scholar 

  26. Resini, C., Catania, F., Berardinelli, S., Paladino, O., Busca, G.: Catalytic wet oxidation of phenol over lanthanum strontium manganite. Appl. Catal. B 84, 678–683 (2008)

    Article  Google Scholar 

  27. Partenheimer, W.: The aerobic oxidative cleavage of lignin to produce hydroxyaromatic benzaldehydes and carboxylic acids via metal/bromide catalysts in acetic acid/water mixtures. Adv. Synth. Catal. 351, 456–466 (2009)

    Article  Google Scholar 

  28. Villar, J.C., Caperos, A., Garcia-Ochoa, F.: Oxidation of hardwood kraft-lignin to phenolic derivatives with oxygen as oxidant. Wood Sci. Technol. 35, 245–255 (2001)

    Article  Google Scholar 

  29. Das, L., Kolar, P., Sharma-Shivappa, R.: Heterogeneous catalytic oxidation of lignin into value-added chemicals. Biofuels 3, 155–166 (2012)

    Article  Google Scholar 

  30. Zhang, J., Deng, H., Lin, L.: Wet aerobic oxidation of lignin into aromatic aldehydes catalysed by a perovskite-type oxide: LaFe1-xCuxO3 (x = 0, 0.1, 0.2). Molecules 14, 2747–2757 (2009)

    Article  Google Scholar 

  31. Gao, P., Li, N., Wang, A., Wang, X., Zhang, T.: Perovskite LaMnO3 hollow nanospheres: the synthesis and the application in catalytic wet air oxidation of phenol. Mater. Lett. 92, 173–176 (2013)

    Article  Google Scholar 

  32. Deng, H., Lin, L., Sun, Y., Pang, C., Zhuang, J., Ouyang, P., Li, J., Liu, S.: Activity and stability of perovskite-type oxide LaCoO3 catalyst in lignin catalytic wet oxidation to aromatic aldehydes process. Energy Fuels. 23, 19–24 (2009)

    Article  Google Scholar 

  33. Misono, M.: Catalysis of perovskite and related mixed oxides. In: Heterogeneous Catalysis of Mixed Oxides Perovskite and Heteropoly Catalysts. pp. 67–95. Elsevier, Amsterdam (2013)

    Chapter  Google Scholar 

  34. Zhu, H., Zhang, P., Dai, S.: Recent advances of lanthanum-based perovskite oxides for catalysis. ACS Catal. 5, 6370–6385 (2015)

    Article  Google Scholar 

  35. Gao, P., Li, C., Wang, H., Wang, X., Wang, A.: Perovskite hollow nanospheres for the catalytic wet air oxidation of lignin. Chinese J. Catal. 34, 1811–1815 (2013)

    Article  Google Scholar 

  36. Bouxin, F., Baumberger, S., Pollet, B., Haudrechy, A., Renault, J.H., Dole, P.: Acidolysis of a lignin model: investigation of heterogeneous catalysis using Montmorillonite clay. Bioresour. Technol. 101, 736–744 (2010)

    Article  Google Scholar 

  37. Chandra, R.P., Bura, R., Mabee, W.E., Berlin, A., Pan, X., Saddler, J.N.: Substrate Pretreatment: The Key to Effective Enzymatic Hydrolysis of Lignocellulosics? In: Biofuels, pp. 67–93. Springer Berlin Heidelberg, Berlin (2007)

    Google Scholar 

  38. Li, J., Gellerstedt, G., Toven, K.: Steam explosion lignins; their extraction, structure and potential as feedstock for biodiesel and chemicals. Bioresour. Technol. 100, 2556–2561 (2009)

    Article  Google Scholar 

  39. Pu, Y., Hu, F., Huang, F., Ragauskas, A.J.: Lignin structural alterations in thermochemical pretreatments with limited delignification. Bioenergy Res. 8, 992–1003 (2015)

    Article  Google Scholar 

  40. Toledano, A., Serrano, L., Labidi, J.: Organosolv lignin depolymerization with different base catalysts. J. Chem. Technol. Biotechnol. 87, 1593–1599 (2012)

    Article  Google Scholar 

  41. Lavoie, J.M., Baré, W., Bilodeau, M.: Depolymerization of steam-treated lignin for the production of green chemicals. Bioresour. Technol. 102, 4917–4920 (2011)

    Article  Google Scholar 

  42. Katahira, R., Mittal, A., McKinney, K., Chen, X., Tucker, M.P., Johnson, D.K., Beckham, G.T.: Base-catalyzed depolymerization of biorefinery lignins. ACS Sustain. Chem. Eng. 4, 1474–1486 (2016)

    Article  Google Scholar 

  43. Alunga, K.R., Ye, Y.-Y., Li, S.-R.L., Liu, Y.-Q.: Catalytic oxidation of lignin-acetoderivatuves: a potential new recovery route for value-added aromatic aldehydes from acetoderivatives. Catal. Sci. Technol. 5, 3746–3753 (2015)

    Article  Google Scholar 

  44. Zhu, J., Chen, J.: Perovskites: Structure, Properties and Uses. Nova Science Publishers, Inc., New York (2010)

    Google Scholar 

  45. Mosier, N., Wyman, C., Dale, B., Elander, R., Lee, Y.Y., Holtzapple, M., Ladisch, M.: Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresour. Technol. 96, 673–686 (2005)

    Article  Google Scholar 

  46. Weil, J., Brewer, M., Hendrickson, R., Sarikaya, A., Ladisch, M.R.: Continuous pH monitoring during pretreatment of yellow poplar wood sawdust by pressure cooking in water. Appl. Biochem. Biotechnol. 70–72, 99–111 (1998)

    Article  Google Scholar 

  47. Palmqvist, E., Hahn-Hägerdal, B.: Fermentation of lignocellulosic hydrolysates. II: inhibitors and mechanisms of inhibition. Bioresour. Technol. 74, 25–33 (2000)

    Article  Google Scholar 

  48. Deng, H., Lin, L., Liu, S.: Catalysis of Cu-doped Co-based perovskite-type oxide in wet oxidation of lignin to produce aromatic aldehydes. Energy Fuels 24, 4797–4802 (2010)

    Article  Google Scholar 

  49. Dutta, S., Wu, K.C.-W., Saha, B.: Emerging strategies for breaking the 3D amorphous network of lignin. Catal. Sci. Technol. 4, 3785–3799 (2014)

    Article  Google Scholar 

  50. Chen, H.: Biotechnology of lignocellulose: Theory and practice. Springer Netherlands (2014)

  51. Xiang, Q., Lee, Y.Y.: Oxidative cracking of precipitated hardwood lignin by hydrogen peroxide. Appl. Biochem. Biotechnol. 84–86, 153–162 (2000)

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge Biochemtex S.p.A for providing the industrial feedstock used in this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raffaele Pirone.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 645 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ansaloni, S., Russo, N. & Pirone, R. Wet Air Oxidation of Industrial Lignin Case Study: Influence of the Dissolution Pretreatment and Perovskite-type Oxides. Waste Biomass Valor 9, 2165–2179 (2018). https://doi.org/10.1007/s12649-017-9947-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-017-9947-4

Keywords

Navigation