Skip to main content

Advertisement

Log in

Solubility measurement and preparation of nanoparticles of ampicillin using subcritical water precipitation method

  • Separation Technology, Thermodynamics
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

To improve the bioavailability of ampicillin trihydrate (AMP) as a poorly water-soluble drug, the nanonization of AMP particles was carried out by solvent anti-solvent precipitation for the first time. In this method the subcritical water (SW) and cold water at ambient conditions were utilized as the solvent and anti-solvent, respectively. At first, the solubility of AMP in SW was measured. The solubility of AMP in SW at a constant pressure of 5 MPa and the temperature range from 303.15 to 403.15 K was found to range from 0.380×10−3 to 17.689×10−3 mole fractions. The effects of three independent variables, including SW temperature, polyethylene glycol concentration, and anti-solvent temperature, on the particle size and morphology of the precipitated nanoparticles were studied. The obtained results of analyses confirmed that the AMP particles were nanosized to the smallest mean size of 66.5 nm using an environmentally friendly method without the requirement of organic solvents and related post-processing purification stages.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

AMP:

ampicillin trihydrate

SW:

subcritical water

SAS:

supercritical anti-solvent

SAA:

supercritical-assisted atomization

GAS:

supercritical gas anti-solvent

DMSO:

dimethyl sulfoxide

BBD:

Box-Behnken design

FTIR:

Fourier transform infrared spectroscopy

XRD:

X-ray diffraction

SEM:

scanning electron microscopy

DLS:

dynamic light scattering

PEG:

polyethylene glycol

x2 :

equilibrium mole fraction

T:

temperature [K]

RSM:

response surface methodology

R2 :

coefficient of determination

References

  1. G. Absalan, A. Abbaspour, M. Jafari, M. Nekoeinia and H. Ershadifar, J Iran Chem. Soc., 12, 879 (2015).

    Article  CAS  Google Scholar 

  2. A. Tenorio, M. D. Gordillo, C. Pereyra and E. J. Martinez de la Ossa, J. Supercrit. Fluids, 40, 308 (2007).

    Article  CAS  Google Scholar 

  3. E. Reverchon, G. Della Porta and A. Spada, J. Pharm. Pharmacol., 55, 1465 (2003).

    Article  CAS  PubMed  Google Scholar 

  4. S. K. Sharma, L. Singh and S. Singh, Sch. J. Appl. Med. Sci., 1, 291 (2013).

    Google Scholar 

  5. Y. Fan, A. C. Pauer, A. A. Gonzales and H. Fenniri, Int. J. Nanomedicine, 14, 7281 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. J. W. Poole and C. K. Bahal, J. Pharm. Sci., 57, 1945 (1968).

    Article  CAS  PubMed  Google Scholar 

  7. Y. Wu, A. Loper, E. Landis, L. Hettrick, L. Novak, K. Lynn, C. Chen, K. Thompson, R. Higgins and U. Batra, Int. J. Pharm., 285, 135 (2004).

    Article  CAS  PubMed  Google Scholar 

  8. P. Khadka, J. Ro, H. Kim, I. Kim, J. T. Kim, H. Kim, J. M. Cho, G. Yun and J. Lee, Asian J. Pharm. Sci., 9, 304 (2014).

    Article  Google Scholar 

  9. Y. Pu, J. X. Wang, D. Wang, N. R. Foster and J. F. Chen, Chem. Eng. Process, 140, 36 (2019).

    Article  CAS  Google Scholar 

  10. G. Sodeifian, F. Razmimanesh and S. A. Sajadian, J. Mol. Liq., 297, 11740 (2020).

    Article  CAS  Google Scholar 

  11. G. Sodeifian, S. A. Sajadian, N. S. Ardestani and F. Razmimanesh, J. Supercrit. Fluids, 147, 241 (2019).

    Article  CAS  Google Scholar 

  12. Z. Sayyar and H. Jafarizadeh-Malmiri, Chem. Eng. Process, 153, 107938 (2020).

    Article  CAS  Google Scholar 

  13. Q. Can, J. Carlfors and C. Turner, Chin. J Chem. Eng., 17, 344 (2009).

    Article  Google Scholar 

  14. O. Kayser, A. Lemke and N. Hernandez-Trejo, Curr. Pharm. Biotechnol., 6, 3 (2005).

    Article  CAS  PubMed  Google Scholar 

  15. C. Leuner and J. Dressman, Eur. J. Pharm. Biopharm., 50, 47 (2000).

    Article  CAS  PubMed  Google Scholar 

  16. S. Stolnik, L. Illum and S. Davis, Adv. Drug Deliv. Rev., 16, 195 (1995).

    Article  CAS  Google Scholar 

  17. C. M. Keck and R. H. Muller, Eur. J. Pharm. Biopharm., 62, 3 (2006).

    Article  CAS  PubMed  Google Scholar 

  18. M. D. Louey, M. V. Oort and A. J. Hickey, Pharm. Res., 21, 1200 (2004).

    Article  CAS  PubMed  Google Scholar 

  19. N. Rasenack, H. Steckel and B. W. Muller, J. Pharm. Sci., 92, 35 (2003).

    Article  CAS  PubMed  Google Scholar 

  20. K. H. Song, C. H. Lee, J. S. Lim and Y. W. Lee, Korean J. Chem. Eng., 19, 139 (2002).

    Article  CAS  Google Scholar 

  21. C. Chinnarasu, A. Montes, C. Pereyra, L. Casas, M. Teresa, C. Mantell, S. Pattabhi and E. Ossa, Korean J. Chem. Eng., 33, 594 (2016).

    Article  CAS  Google Scholar 

  22. S. J. Park and S. D. Yeo, Korean J. Chem. Eng., 25, 575 (2008).

    Article  CAS  Google Scholar 

  23. C. K. Kim, B. C. Lee, Y. W. Lee and H. Kim, Korean J. Chem. Eng., 26, 1125 (2009).

    Article  CAS  Google Scholar 

  24. S. V. Dalvi and M. Mukhopadhyay, Powder Technol., 195, 190 (2009).

    Article  CAS  Google Scholar 

  25. F. Masoodiyeh, J. Karimi-Sabet, A. R. Khanchi and M. R. Mozdianfard, Powder Technol., 269, 461 (2015).

    Article  CAS  Google Scholar 

  26. A. Montes, A. I. Tenorio, M. D. Gordillo, C. M. Pereyra and E. J. Martinez, Ind. Eng. Chem. Res., 50, 2343 (2011).

    Article  CAS  Google Scholar 

  27. N. Esfandiari and S. M. Ghoreishi, AAPS Pharm. Sci. Tech., 6, 1263 (2015).

    Article  CAS  Google Scholar 

  28. M. Khajenoori, A. Haghighi Asl and F. Hormozi, Chin. J. Chem. Eng., 17, 359 (2009).

    Article  CAS  Google Scholar 

  29. O. Ahmadi and H. Jafarizadeh-Malmiri, Food Sci. Biotechnol., 29, 783 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. R. Alenezi, G. A. Leeke, R. C. D. Santos and A. R. Khan, Chem. Eng. Res. Des., 87, 867 (2009).

    Article  CAS  Google Scholar 

  31. R. J. Fernandez-Prini, H. R. Corti and M. L. Japas, High-temperature aqueous solutions: Thermodynamic properties, CRC Press, Boca Raton (1992).

    Google Scholar 

  32. J. N. Park, A. Alinehari, H. C. Woo and B. S. Chun, Korean J. Chem. Eng., 29, 1604 (2012).

    Article  CAS  Google Scholar 

  33. A. G. Carr, R. Mammucari and N. R. Foster, Ind. Eng. Chem. Res., 49, 3403 (2010).

    Article  CAS  Google Scholar 

  34. H. Share Mohammadi, A. Haghighi Asl and M. Khajenoori, Chin. J. Chem. Eng., 8, 2620 (2020).

    Article  Google Scholar 

  35. X. Y. Chen, Y. L. Shang, Y. H. Li, J. X. Wang, A. G. Maimouna, Y. X. Li, D. Zou, N. R. Foster, J. Yun and Y. Pu, Chem. Eng. J., 263, 20 (2015).

    Article  CAS  Google Scholar 

  36. E. D. Hugger, B. L. Novak, P. S. Burton, K. L. Audus and R. T. Borchardt, J. Pharm. Sci., 91, 1991 (2002).

    Article  CAS  PubMed  Google Scholar 

  37. M. Rahimi, P. Valeh-e-Sheyda and H. Rashidi, Korean J. Chem. Eng., 34, 3017 (2017).

    Article  CAS  Google Scholar 

  38. A. G. Carr, R. Mammucari and N. R. Foster, Ind. Eng. Chem. Res., 49, 9385 (2010).

    Article  CAS  Google Scholar 

  39. Y. Pu, J. Lu, D. Wang, F. Cai, J. Wang, N. R. Foster and J. F. Chen, Powder Technol., 321, 197 (2017).

    Article  CAS  Google Scholar 

  40. A. G. Carr, R. Mammucari and N. R. Foster, Chem. Eng. J., 172, 1 (2011).

    Article  CAS  Google Scholar 

  41. B. Kayan, Y. Yang, E. J. Lindquist and A. M. Gizir, J. Chem. Eng. Data, 55, 2229 (2010).

    Article  CAS  Google Scholar 

  42. B. Kapalavavi, J. Ankney, M. Baucom and Y. Yang, J. Chem. Eng. Data, 59, 912 (2014).

    Article  CAS  Google Scholar 

  43. M. Uematsu and E. U. Frank, J. Phys. Chem. Ref. Data, 9, 1291 (1980).

    Article  CAS  Google Scholar 

  44. E. R. Caffarena and J. R. Grigera, Physica A Stat. Mech. Appl., 342, 34 (2004).

    Article  CAS  Google Scholar 

  45. Y. Takebayashi, K. Sue, S. Yoda, Y. Hakuta and T. Furuya, J. Chem. Eng. Data, 57, 1810 (2012).

    Article  CAS  Google Scholar 

  46. K. Shinoda, J. Phys. Chem. A, 81, 1300 (1977).

    Article  CAS  Google Scholar 

  47. D. J. Miller and S. B. Hawthorne, Anal. Chem., 70, 1618 (1998).

    Article  CAS  PubMed  Google Scholar 

  48. S. Akay, B. Kayan, D. Cunbin, J. Wang and Y. Yang, J. Mol. Liq., 253, 270 (2018).

    Article  CAS  Google Scholar 

  49. S. Karthika, T. Radhakrishnan and P. Kalaichelvi, Cryst. Growth Des., 16, 6663 (2016).

    Article  CAS  Google Scholar 

  50. M. Turk, J. Supercrit. Fluids, 18, 169 (2000).

    Article  CAS  Google Scholar 

  51. G. Sodeifian, S. A. Sajadian and S. Daneshyan, J. Supercrit. Fluids, 140, 72 (2018).

    Article  CAS  Google Scholar 

  52. Y. Pu, Y. Li, D. Wang, N. R. Foster, J. X. Wang and J. F. Chen, Powder Technol., 308, 200 (2017).

    Article  CAS  Google Scholar 

  53. Y. Pu, X. Wen, Y. Li, D. Wang, N. R. Foster and J. F. Chen, Powder Technol., 305, 125 (2017).

    Article  CAS  Google Scholar 

  54. A. G. Carr, R. Mammucari and N. R. Foster, Int. J. Pharm., 405, 169 (2011).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Haghighi Asl.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohammadi, H.S., Asl, A.H. & Khajenoori, M. Solubility measurement and preparation of nanoparticles of ampicillin using subcritical water precipitation method. Korean J. Chem. Eng. 38, 2304–2312 (2021). https://doi.org/10.1007/s11814-021-0891-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-021-0891-4

Keywords

Navigation