Skip to main content
Log in

Thermal and Energy Transport Prediction in Non-Newtonian Biomagnetic Hybrid Nanofluids using Gaussian Process Regression

  • Research Article-Mechanical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Hybrid nanofluids are a type of nanofluid that is created by combining two different types of nanoparticles with a traditional fluid. These nanofluids have unique physicochemical properties that make them more effective at transferring heat than traditional nanofluids. This research paper focuses on predicting thermal and energy transport in non-Newtonian biomagnetic hybrid nanofluids that contain gold and silver nanoparticles, using Gaussian process regression (GPR). The study uses blood as the traditional fluid and incorporates the effects of thermal radiation, thermophoresis, Brownian motion and activation energy into the model equation. The governing nonlinear partial differential equations are simplified to a set of ordinary differential equations using similarity replacements. The shooting method, along with the Runge–Kutta-Fehlberg fourth–fifth-order scheme, is used to solve the transformed equations using MATLAB. The results of the study are presented through figures and tables, which include the coefficient of skin friction, Nusselt number, Sherwood number and motile microbe’s flux, illustrated with surface plots. The GPR model is developed using four basic function kernels (squared exponential, exponential, rational quadratic and matern32 functions) and evaluated using statistical indicators such as RMSE, MSE, MAE and R. The predicted results and simulated numerical values are in good agreement with the coefficient of determination (R2) of 0.999999 for all parameters. The study also finds that GPR models with exponential kernel functions outperform other kernel functions in both the Oldroyd-B and Casson hybrid nanofluid data sets. However, the findings indicate that nanofluids and hybrid nanofluids have superior thermal qualities and stability, making them promising candidates for various thermal applications including solar thermal systems, automotive cooling systems, heat sinks, engineering, medical areas and thermal energy storage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34
Fig. 35
Fig. 36
Fig. 37

Similar content being viewed by others

Abbreviations

\({\overline{u} }_{{\text{w}}},{\overline{u} }_{{\text{e}}}\) :

Stretching and free stream velocity [m/s]

\({\overline{U} }_{{\text{w}}}, {\overline{U} }_{\infty }\) :

Positive constants

\(m\) :

Hartree pressure gradient

\({B}_{0}\) :

Magnetic induction parameter, [T]

\(\overline{B }\) :

Magnetic field

\({\overline{T} }_{{\text{w}}}, {\overline{T} }_{\infty }\) :

Temperature near and far away from the wedge wall, [K]

\({\overline{C} }_{{\text{w}}},{\overline{C} }_{\infty }\) :

Concentration of nanoparticles near and far away from the wedge surface

\({\overline{N} }_{{\text{w}}},{\overline{N} }_{\infty }\) :

Density of motile microbes near and far away from the wedge surface

\({D}_{{\text{B}}},{D}_{{\text{T}}},{D}_{{\text{n}}}\) :

Brownian, thermophoresis and microbes’ diffusion coefficient, [m2/s]

\(\widetilde{S}\) :

Extra stress tensor

\(P\) :

Pressure

\(I\) :

Tensor of the identity

\(\frac{{\text{d}}}{{\text{d}}\overline{t} }\) :

Material time derivative

\({\widetilde{A}}_{1}\) :

First tensor of Rivlin-Erickson

\(\pi\) :

Product component of the distortion rate

\({p}_{\overline{{\text{y}}} }\) :

Yield stress

\({\mathfrak{e}}_{\mathfrak{i}\mathfrak{j}}\) :

Distortion rate of \(\left(\mathfrak{i},\mathfrak{j}\right)\) th element

\({\pi }_{\mathfrak{c}}\) :

Critical value based on Casson non- Newtonian model

\(b\) :

Chemotaxis constant

\({W}_{{\text{c}}}\) :

Extreme speed of cell swimming

\({E}_{{\text{a}}}\) :

Modified Arrhenius function

\({k}_{{\text{r}}}\) :

Rate of chemical reaction, [1/s]

\({k}_{0}\) :

Physical constant

\({\overline{q} }_{{\text{r}}}\) :

Radiative heat transport

\(\overline{T }\) :

Temperature, [K]

\(\overline{C }\) :

Nanoparticle concentration, [moles/kg]

\(\overline{N }\) :

Density of motile microorganisms

\(\overline{u }, \overline{v }\) :

The ingredients of velocity in \(\overline{x }\) and \(\overline{y }\) directions [m/s]

\(\overline{x }\) :

Parallel to the surface of the stretching wedge, [m]

\(\overline{y }\) :

Distance normal to the surface, [m]

\(f\) :

Dimensionless stream function

\(M\) :

Magnetic parameter

\({\text{Pr}}\) :

Prandtl number

\({R}_{{\text{d}}}\) :

Radiation parameter

\(\sigma\) :

Chemical reaction parameter

\({\text{Nb}}\) :

Brownian motion parameter

\({\text{Nt}}\) :

Thermophoresis parameter

\({\text{Ec}}\) :

Eckert number

\({\text{Le}}\) :

Lewis number

\(E\) :

Activation energy parameter

\({\text{Lb}}\) :

Lewis number of bioconvection

\({\text{Pe}}\) :

Peclet number of bioconvection

\(\overline{{\text{N}}}{{\text{u}} }_{x}\) :

Nusselt number

\(\overline{{\text{S}}}{{\text{h}} }_{x}\) :

Sherwood number

\(\overline{{\text{M}}}{{\text{h}} }_{x}\) :

Density of motile microbe’s flux

\({{\text{Re}}}_{x}\) :

Local Reynolds number

\(\mathcalligra{n}\) :

Observations

\(\mathcal{C}\left(s,{s}{\prime}\right)\) :

Covariance or kernel function

\(l\) :

Parameter of length scale

\(\mathfrak{c}\) :

Intercept constant

\(\chi\) :

Similarity variable

\(\widetilde{\zeta }\) :

Cauchy stress tensor

\({\widetilde{\mu }}_{{\text{B}}}\) :

Plastic dynamic viscosity

\(\tau\) :

Ratio of heat capacity

\({\overline{\Omega } }^{*}\) :

Total wedge angle

\(\widetilde{\mu }\) :

Coefficient of viscosity

\({\widetilde{\Lambda }}_{1}\) :

Relaxation time

\({\widetilde{\Lambda }}_{2}\) :

Retardation time

\({\left(\rho {c}_{{\text{p}}}\right)}_{{\text{np}}},{\left(\rho {c}_{{\text{p}}}\right)}_{{\text{bf}}}\) :

The heat capacity of the nanoparticle and the base fluid

\(\varpi \left(\overline{x },\overline{y }\right)\) :

Stream function

\({\sigma }^{*}\) :

The constant of Stefan-Boltzmann, [W/m2 K4]

\({k}^{*}\) :

Coefficient of mean absorption, [1/m]

\({\varphi }_{{\text{Ag}}},{\varphi }_{{\text{Au}}}\) :

Nanoparticle volume fractions of silver and gold

\({\vartheta }_{{\text{hnf}}}\) :

Kinematic viscosity of the hybrid nanofluid, [m2/s]

\({\rho }_{{\text{hnf}}}\) :

Density of the hybrid nanofluid, [kg/m3]

\({\left({\rho c}_{{\text{p}}}\right)}_{{\text{hnf}}}\) :

Heat capacity of the hybrid nanofluid, [kg/m3K]

\({k}_{{\text{hnf}}}\) :

Thermal conductivity of the hybrid nanofluid, [W/m K]

\({\mu }_{{\text{hnf}}}\) :

Dynamic viscosity of the hybrid nanofluid, [kg/m s]

\({k}_{{\text{nf}}}\) :

Thermal conductivity of the nanofluid, [W/m K]

\({\sigma }_{{\text{bf}}}\) :

Electrical conductivity of the base fluid, [S/m]

\({\mu }_{{\text{bf}}}\) :

Dynamic viscosity of the base fluid, [kg/m s]

\({\vartheta }_{{\text{bf}}}\) :

Kinematic viscosity of the base fluid, [m2/s]

\({\rho }_{{\text{bf}}}\) :

Density of the base fluid, [kg/m3]

\({\left({\rho c}_{{\text{p}}}\right)}_{{\text{bf}}}\) :

Heat capacity of the base fluid, [kg/m3K]

\({k}_{{\text{bf}}}\) :

Thermal conductivity of the base nanofluid, [W/m K]

\({c}_{{\text{p}}}\) :

Specific heat

\(\theta\) :

Dimensionless temperature

\(\phi\) :

Dimensionless nanoparticle concentration

\(\Psi\) :

Dimensionless density of motile microbes

\(\gamma\) :

Moving wedge parameter

\(\beta\) :

Parameter of Casson nanofluid

\({\beta }_{1}\) :

Deborah number for relaxation time

\({\beta }_{2}\) :

Deborah number for retardation time

\(\delta\) :

Heat source parameter

\({\sigma }_{1}\) :

Concentration difference parameter

\(\check{\sigma }\) :

Standard deviation of the signal

\(\varsigma\) :

Gamma function

\({\mathcal{C}}_{\varsigma }\) :

Bessel function

\(\varsigma\) :

Smooth factor

\(\epsilon\) :

Gaussian distribution noise value

\(w\) :

Quantities at wall

\(\infty\) :

Quantities at free stream

\({\text{bf}}\) :

Base fluid

\({\text{nf}}\) :

Nanofluid

\({\text{hnf}}\) :

Hybrid nanofluid

\({\text{Au}},\mathrm{ Ag}\) :

Silver and Gold

References

  1. Oldroyd, J.G.: On the formulation of rheological equations of state, Proceedings of the Royal Society of London Series A. Math. Phys. Sci. 200(1063), 523–541 (1950)

    Google Scholar 

  2. Hayat, T.; Muhammad, T.; Shehzad, S.A.; Alsaedi, A.: An analytical solution for magnetohydrodynamic Oldroyd-B nanofluid flow induced by a stretching sheet with heat generation/absorption. Int. J. Therm. Sci. 111, 274–288 (2017)

    Article  Google Scholar 

  3. Reddy, M.G.; Rani, M.S.; Kumar, K.G.; Prasannakumara, B.C.: Cattaneo-Christov heat flux and non-uniform heat-source/sink impacts on radiative Oldroyd-B two-phase flow across a cone/wedge. J. Braz. Soc. Mech. Sci. Eng. 40(2), 1–21 (2018)

    Article  Google Scholar 

  4. Kalyani, K.; Rao, N.S.; Makinde, O.D.; Reddy, M.G.; Rani, M.S.: Influence of viscous dissipation and double stratification on MHD Oldroyd-B fluid over a stretching sheet with uniform heat source. SN Appl. Sci. 1(4), 1–11 (2019)

    Article  Google Scholar 

  5. Tong, Z.W.; Ahmed, B.; Al-Khaled, K.; Khan, S.U.; Khan, M.I.; Ahmad, S.; Malik, M.Y.; Xia, W.F.: Peristaltic blood transport in non-newtonian fluid confined by porous soaked tube: a numerical study through galerkin finite element technique. Arab. J. Sci. Eng. 47, 1019–1031 (2022)

    Article  Google Scholar 

  6. Nayak, M.K.; Saranya, S.; Ganga, B.; Hakeem, A.K.A.; Sharma, R.P.; Makinde, O.D.: Influence of relaxation-retardation viscous dissipation on chemically reactive flow of Oldroyd-B nanofluid with hyperbolic boundary conditions. Heat Transfer 49(8), 4945–4967 (2020)

    Article  Google Scholar 

  7. Ali, B.; Hussain, S.; Nie, Y.; Hussein, A.K.; Habib, D.: Finite element investigation of Dufour and Soret impacts on MHD rotating flow of Oldroyd-B nanofluid over a stretching sheet with double diffusion Cattaneo Christov heat flux model. Powder Technol. 377, 439–452 (2021)

    Article  Google Scholar 

  8. Munir, S.; Maqsood, A.; Farooq, U.; Hussain, M.; Siddiqui, M.I.; Muhammad, T.: Numerical analysis of entropy generation in the stagnation point flow of Oldroyd-B nanofluid. Waves Random Complex Media (2022). https://doi.org/10.1080/17455030.2021.2023782

    Article  Google Scholar 

  9. N. Casson, A flow equation for pigment-oil suspensions of the printing ink type. Rheology of disperse systems (1959).

  10. Raju, C.S.K.; Sandeep, N.: Nonlinear radiative magnetohydrodynamic Falkner-Skan flow of Casson fluid over a wedge. Alex. Eng. J. 55(3), 2045–2054 (2016)

    Article  Google Scholar 

  11. Tamoor, M.; Waqas, M.; Khan, M.I.; Alsaedi, A.; Hayat, T.: Magnetohydrodynamic flow of Casson fluid over a stretching cylinder. Results Phys. 7, 498–502 (2017)

    Article  Google Scholar 

  12. Ullah, I.; Shafie, S.; Khan, I.; Hsiao, K.L.: Brownian diffusion and thermophoresis mechanisms in Casson fluid over a moving wedge. Results Phys. 9, 183–194 (2018)

    Article  Google Scholar 

  13. Rashidi, M.M.; Bagheri, S.; Momoniat, E.; Freidoonimehr, N.: Entropy analysis of convective MHD flow of third grade non-Newtonian fluid over a stretching sheet. Ain Shams Eng. J. 8(1), 77–85 (2017)

    Article  Google Scholar 

  14. Oyelakin, I.S.; Mondal, S.; Sibanda, P.: Nonlinear radiation in bioconvective Casson nanofluid flow. Int. J. Appl. Comput. Math. 5(5), 1–20 (2019)

    Article  MathSciNet  Google Scholar 

  15. Khan, S.; Shu, W.; Ali, M.; Sultan, F.; Shahzad, M.: Numerical simulation for MHD flow of Casson nanofluid by heated surface. Appl. Nanosci. 10(12), 5391–5399 (2020)

    Article  Google Scholar 

  16. Krishna, S.G.; Shanmugapriya, M.: Inquiry of MHD bioconvective non-Newtonian nanofluid flow over a moving wedge using HPM. Materials Today: Proceedings 38, 3297–3305 (2021)

    Google Scholar 

  17. Tawade, J.V.; Guled, C.N.; Noeiaghdam, S.; Fernandez-Gamiz, U.; Govindan, V.; Balamuralitharan, S.: Effects of thermophoresis and Brownian motion for thermal and chemically reacting Casson nanofluid flow over a linearly stretching sheet. Results Eng. 15, 100448 (2022)

    Article  Google Scholar 

  18. S.U.S. Choi (1995), Enhancing thermal conductivity of fluids with nanoparticles Proceedings of the 1995 ASME International Mechanical Engineering Congress and Exposition, FED 231/MD 66: 99–105.

  19. Soomro, F.A.; Khan, Z.H.; Zhang, Q.: Numerical study of entropy generation in MHD water-based carbon nanotubes along an inclined permeable surface. Eur. Phys. J. Plus 132(10), 1–12 (2017)

    Article  Google Scholar 

  20. Turkyilmazoglu, M.: Algebraic solutions of flow and heat for some nanofluids over deformable and permeable surfaces. Int. J. Numer. Meth. Heat Fluid Flow 27(10), 2259–2267 (2017)

    Article  MathSciNet  Google Scholar 

  21. Daniel, Y.S.; Aziz, Z.A.; Ismail, Z.; Salah, F.: Impact of thermal radiation on electrical MHD flow of nanofluid over nonlinear stretching sheet with variable thickness. Alex. Eng. J. 57(3), 2187–2197 (2018)

    Article  Google Scholar 

  22. Almutairi, F.; Khaled, S.M.; Ebaid, A.: MHD flow of nanofluid with homogeneous-heterogeneous reactions in a porous medium under the influence of second-order velocity slip. Mathematics 7(3), 220 (2019)

    Article  Google Scholar 

  23. Zhang, X.H.; Abidi, A.; Ahmed, A.E.S.; Khan, M.R.; El-Shorbagy, M.A.; Shutaywi, M.; A. Issakhov A. M. Galal,: MHD stagnation point flow of nanofluid over a curved stretching/shrinking surface subject to the influence of Joule heating and convective condition. Case Stud. Therm. Eng. 26, 101184 (2021)

    Article  Google Scholar 

  24. Hazarika, S.; Ahmed, S.; Chamkha, A.J.: Investigation of nanoparticles Cu, Ag and Fe3O4 on thermophoresis and viscous dissipation of MHD nanofluid over a stretching sheet in a porous regime: a numerical modeling. Math. Comput. Simul 182, 819–837 (2021)

    Article  Google Scholar 

  25. Ali, L.; Ali, B.; Abd Allah, A.M.; Hammouch, Z.; Hussain, S.; Siddique, I.; Huang, Y.: Insight into significance of thermal stratification and radiation on dynamics of micropolar water based TiO2 nanoparticle via finite element simulation. J. Mater. Res. Technol. 19, 4209–4219 (2022)

    Article  Google Scholar 

  26. Lu, D.C.; Farooq, U.; Hayat, T.; Rashidi, M.M.; Ramzan, M.: Computational analysis of three layer fluid model including a nanomaterial layer. Int. J. Heat Mass Transf. 122, 222–228 (2018)

    Article  Google Scholar 

  27. Rahman, M.; Sharif, F.; Turkyilmazoglu, M.; Siddiqui, M.S.: Unsteady three-dimensional magnetohydrodynamics flow of nanofluids over a decelerated rotating disk with uniform suction. Pramana 96(4), 170 (2022)

    Article  Google Scholar 

  28. Turkyilmazoglu, M.: Multiple exact solutions of free convection flows in saturated porous media with variable heat flux. J. Porous Media 25(6), 53–63 (2022)

    Article  Google Scholar 

  29. Turcu, R.; Darabont, A.L.; Nan, A.; Aldea, N.; Macovei, D.; Bica, D.; Biro, L.P.: New polypyrrole-multiwall carbon nanotubes hybrid materials. J. Optoelectron. Adv. Mater. 8(2), 643–647 (2006)

    Google Scholar 

  30. Maskeen, M.M.; Zeeshan, A.; Mehmood, O.U.; Hassan, M.: Heat transfer enhancement in hydromagnetic alumina–copper/water hybrid nanofluid flow over a stretching cylinder. J. Therm. Anal. Calorim. 138(2), 1127–1136 (2019)

    Article  Google Scholar 

  31. Shoaib, M.; Raja, M.A.Z.; Sabir, M.T.; Islam, S.; Shah, Z.; Kumam, P.; Alrabaiah, H.: Numerical investigation for rotating flow of MHD hybrid nanofluid with thermal radiation over a stretching sheet. Sci. Rep. 10(1), 1–15 (2020)

    Article  Google Scholar 

  32. Muhammad, K.; Hayat, T.; Alsaedi, A.: Numerical study for melting heat in dissipative flow of hybrid nanofluid over a variable thicked surface. Int. Commun. Heat Mass Transfer 121, 104805 (2021)

    Article  Google Scholar 

  33. Khan, M.; Alsaduni, I.N.; Alluhaidan, M.; Xia, W.F.; Ibrahim, M.: Evaluating the energy efficiency of a parabolic trough solar collector filled with a hybrid nanofluid by utilizing double fluid system and a novel corrugated absorber tube. J. Taiwan Inst. Chem. Eng. 124, 150–161 (2021)

    Article  Google Scholar 

  34. Khan, U.; Zaib, A.; Waini, I.; Ishak, A.; Sherif, E.S.M.; Xia, W.F.; Muhammad, N.: Impact of Smoluchowski temperature and Maxwell velocity slip conditions on axisymmetric rotated flow of hybrid nanofluid past a porous moving rotating disk. Nanomaterials 12(2), 276 (2022)

    Article  Google Scholar 

  35. Alhussain, Z.A.; Tassaddiq, A.: Thin film blood based casson hybrid nanofluid flow with variable viscosity. Arab. J. Sci. Eng. 47(1), 1087–1094 (2022)

    Article  Google Scholar 

  36. Abbas, N.; Shatanawi, W.; Abodayeh, K.: Computational analysis of MHD nonlinear radiation casson hybrid nanofluid flow at vertical stretching sheet. Symmetry 14(7), 1494 (2022)

    Article  Google Scholar 

  37. Zhang, J.; Raza, A.; Khan, U.; Ali, Q.; Zaib, A.; Weera, W.; Galal, A.M.: Thermophysical study of oldroyd-B Hybrid nanofluid with sinusoidal conditions and permeability: a prabhakar fractional approach. Fract. Fract. 6(7), 357 (2022)

    Article  Google Scholar 

  38. Bestman, A.R.: Natural convection boundary layer with suction and mass transfer in a porous medium. Int. J. Energy Res. 14(4), 389–396 (1990)

    Article  Google Scholar 

  39. Ramzan, M.; Ullah, N.; Chung, J.D.; Lu, D.; Farooq, U.: Buoyancy effects on the radiative magneto Micropolar nanofluid flow with double stratification, activation energy and binary chemical reaction. Sci. Rep. 7(1), 1–15 (2017)

    Article  Google Scholar 

  40. Irfan, M.; Khan, W.A.; Khan, M.; Gulzar, M.M.: Influence of Arrhenius activation energy in chemically reactive radiative flow of 3D Carreau nanofluid with nonlinear mixed convection. J. Phys. Chem. Solids 125, 141–152 (2019)

    Article  Google Scholar 

  41. Ali, B.; Hussain, S.; Nie, Y.; Rehman, A.U.; Khalid, M.: Buoyancy effetcs on falknerskan flow of a Maxwell nanofluid fluid with activation energy past a wedge: finite element approach. Chin. J. Phys. 68, 368–380 (2020)

    Article  Google Scholar 

  42. Azam, M.; Abbas, Z.: Recent progress in Arrhenius activation energy for radiative heat transport of cross nanofluid over a melting wedge. Propul. Power Res. 10(4), 383–395 (2021)

    Article  Google Scholar 

  43. Shanmugapriya, M.; Sundareswaran, R.; Senthil Kumar, P.: Heat and mass transfer enhancement of MHD hybrid nanofluid flow in the presence of activation energy. Int. J. Chem. Eng. 2021, 1–12 (2021)

    Article  Google Scholar 

  44. Rekha, M.B.; Sarris, I.E.; Madhukesh, J.K.; Raghunatha, K.R.; Prasannakumara, B.C.: Activation energy impact on flow of AA7072-AA7075/Water-Based hybrid nanofluid through a cone, wedge and plate. Micromachines 13(2), 302 (2022)

    Article  Google Scholar 

  45. Plesset, M.S.; Winet, H.: Bioconvection patterns in swimming microorganism cultures as an example of Rayleigh-Taylor instability. Nature 248(5447), 441–443 (1974)

    Article  Google Scholar 

  46. Alsaedi, A.; Khan, M.I.; Farooq, M.; Gull, N.; Hayat, T.: Magnetohydrodynamic (MHD) stratified bioconvective flow of nanofluid due to gyrotactic microorganisms. Adv. Powder Technol. 28(1), 288–298 (2017)

    Article  Google Scholar 

  47. Bhatti, M.M.; Mishra, S.R.; Abbas, T.; Rashidi, M.M.: A mathematical model of MHD nanofluid flow having gyrotactic microorganisms with thermal radiation and chemical reaction effects. Neural Comput. Appl. 30(4), 1237–1249 (2018)

    Article  Google Scholar 

  48. Waqas, H.; Khan, S.U.; Hassan, M.; Bhatti, M.M.; Imran, M.: Analysis on the bioconvection flow of modified second-grade nanofluid containing gyrotactic microorganisms and nanoparticles. J. Mol. Liq. 291, 111231 (2019)

    Article  Google Scholar 

  49. Ahmad, F.; Gul, T.; Khan, I.; Saeed, A.; Selim, M.M.; Kumam, P.; Ali, I.: MHD thin film flow of the Oldroyd-B fluid together with bioconvection and activation energy. Case Stud. Therm. Eng. 27, 101218 (2021)

    Article  Google Scholar 

  50. Wang, F.; Zhang, J.; Algarni, S.; Naveed Khan, M.; Alqahtani, T.; Ahmad, S.: Numerical simulation of hybrid Casson nanofluid flow by the influence of magnetic dipole and gyrotactic microorganism. Waves in Random and Complex Media (2022). https://doi.org/10.1080/17455030.2022.2032866

    Article  Google Scholar 

  51. Grbić, R.; Kurtagić, D.; Slišković, D.: Stream water temperature prediction based on Gaussian process regression. Expert Syst. Appl. 40(18), 7407–7414 (2013)

    Article  Google Scholar 

  52. Jiang, Y.; Jia, J.; Li, Y.; Kou, Y.; Sun, S.: Prediction of gas-liquid two-phase choke flow using Gaussian process regression. Flow Meas. Instrum. 81, 102044 (2021)

    Article  Google Scholar 

  53. Chen, Q.; Li, N.: Thermal response time prediction-based control strategy for radiant floor heating system based on Gaussian process regression. Energy and Buildings 263, 112044 (2022)

    Article  Google Scholar 

  54. Adun, H.; Wole-Osho, I.; Okonkwo, E.C.; Ruwa, T.; Agwa, T.; Onochie, K.; Ukwu, H.; Bamisile, O.; Dagbasi, M.: Estimation of thermophysical property of hybrid nanofluids for solar thermal applications: implementation of novel optimizable Gaussian process regression (O-GPR) approach for viscosity prediction. Neural Comput. Appl. (2022). https://doi.org/10.1007/s00521-022-07038-2

    Article  Google Scholar 

  55. Said, Z.; Sharma, P.; Elavarasan, R.M.; Tiwari, A.K.; Rathod, M.K.: Exploring the specific heat capacity of water-based hybrid nanofluids for solar energy applications: a comparative evaluation of modern ensemble machine learning techniques. J. Energy Stor. 54, 105230 (2022)

    Article  Google Scholar 

  56. Algehyne, E.A.; Aldhabani, M.S.; Saeed, A.; Dawar, A.; Kumam, P.: Mixed convective flow of Casson and Oldroyd-B fluids through a stratified stretching sheet with nonlinear thermal radiation and chemical reaction. J. Taibah Univ. Sci. 16(1), 193–203 (2022)

    Article  Google Scholar 

  57. Ghadikolaei, S.S.; Hosseinzadeh, K.; Ganji, D.D.; Jafari, B.: Nonlinear thermal radiation effect on magneto Casson nanofluid flow with Joule heating effect over an inclined porous stretching sheet. Case Stud. Therm. Eng. 12, 176–187 (2018)

    Article  Google Scholar 

  58. Bilal Ashraf, M.; Hayat, T.; Alsulami, H.: Mixed convection Falkner-Skan wedge flow of an Oldroyd-B fluid in presence of thermal radiation. J. Appl. Fluid Mech. 9(4), 1753–1762 (2016)

    Google Scholar 

  59. Gopi Krishna, S.; Shanmugapriya, M.; Alsinai, A.; Alameri, A.: Prediction of thermal and energy transport of MHD Sutterby hybrid nanofluid flow with activation energy using group method of data Handling (GMDH). Comput. Appl. Math. 41(7), 1–39 (2022)

    MathSciNet  Google Scholar 

  60. Gopi Krishna, S.; Shanmugapriya, M.; Senthil Kumar, P.: Prediction of bio-heat and mass transportation in radiative MHD Walter-B nanofluid using MANFIS model. Math. Comput. Simul 201, 49–67 (2022)

    Article  MathSciNet  Google Scholar 

  61. Gul, T.; Ali, B.; Alghamdi, W.; Nasir, S.; Saeed, A.; Kumam, P.; Mukhtar, S.; Kumam, W.; Jawad, M.: Mixed convection stagnation point flow of the blood based hybrid nanofluid around a rotating sphere. Sci. Rep. 11(1), 1–15 (2021)

    Article  Google Scholar 

  62. Souayeh, B.; Ramesh, K.; Hdhiri, N.; Yasin, E.; Alam, M.W.; Alfares, K.; Yasin, A.: Heat transfer attributes of gold–silver–blood hybrid nanomaterial flow in an EMHD peristaltic channel with activation energy. Nanomaterials 12(10), 1615 (2022)

    Article  Google Scholar 

  63. Yacob, N.A.; Ishak, A.; Pop, I.: Falkner-Skan problem for a static or moving wedge in nanofluids. Int. J. Therm. Sci. 50(2), 133–139 (2011)

    Article  Google Scholar 

  64. Kebede, T.; Haile, E.; Awgichew, G.; Walelign, T.: Heat and mass transfer analysis in unsteady flow of tangent hyperbolic nanofluid over a moving wedge with buoyancy and dissipation effects. Heliyon 6(4), e03776 (2020)

    Article  Google Scholar 

  65. Gopi Krishna, S.; Shanmugapriya, M.; Sundareswaran, R.; Kumar, P.S.: MANFIS approach for predicting heat and mass transport of bio-magnetic ternary hybrid nanofluid using Cu/Al2O3/ MWCNT nanoadditives. Biomass Convers. Biorefinery (2022). https://doi.org/10.1007/s13399-022-02989-x

    Article  Google Scholar 

  66. Ullah, I.; Khan, I.; Shafie, S.: Heat and mass transfer in unsteady MHD slip flow of Casson fluid over a moving wedge embedded in a porous medium in the presence of chemical reaction. Numer. Methods Part. Diff. Equa. 34(5), 1–25 (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to M. Shanmugapriya or B. Rushi Kumar.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krishna, S.G., Shanmugapriya, M., Kumar, B.R. et al. Thermal and Energy Transport Prediction in Non-Newtonian Biomagnetic Hybrid Nanofluids using Gaussian Process Regression. Arab J Sci Eng (2024). https://doi.org/10.1007/s13369-024-08834-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13369-024-08834-9

Keywords

Navigation