Skip to main content
Log in

Fe Oxides–Eggshell Composites: Development, Characterization, and Oxytetracycline Adsorption Test

  • Research Article-Chemical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

While emerging pollutants are being detected in water bodies globally, a significant amount of solid waste that could be used for effluent remediation is being discarded. This not only reduces the half-life of landfills but also contributes to environmental pollution. Of these, eggshells (ES) are one of the most discarded food waste items worldwide. This paper presents the development and characterization of ES-based adsorbent for the removal of oxytetracycline (OTC), an emerging pharmaceutical pollutant, from aqueous solutions. The sorption of OTC on ES and ES-derived materials has not been previously studied. The ES was modified by removing the organic layer and both materials were used to grow Fe oxides, which can impart magnetic response to allow indirect manipulation or the addition of new sorption sites. Two methodologies were employed to synthesize Fe oxides: alkaline oxidation in the presence of nitrate and impregnation–pyrolysis (IP), which have not been used previously for developing magnetic ES. The materials developed by IP exhibit the highest total specific surface area and display a magnetic response due to the presence of magnetite and maghemite. Moreover, they exhibit a negative zeta potential over a wide range of pH values. All materials were able to adsorb OTC at pH 3, 7, or 9, indicating that ES (the simplest material) and ESIP (composite with good enough magnetic response) are suitable for removing OTC from aqueous solution. ES is recommended when indirect manipulation is not necessary, whereas ESIP is recommended when it is required. In order to explore the potential for reuse of the composite-pollutant materials, their antibacterial capacity against E. coli and E. faecium was evaluated. The findings of the present work contribute to the development of a circular economy by reducing waste generation, minimizing the consumption of natural resources, and reducing greenhouse gas emissions, while improving environmental protection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author upon reasonable request.

References

  1. Quina, M.J.; Soares, M.A.R.; Quinta-Ferreira, R.: Applications of industrial eggshell as a valuable anthropogenic resource. Resour. Conserv. Recycl. 123, 176–186 (2017). https://doi.org/10.1016/j.resconrec.2016.09.027

    Article  Google Scholar 

  2. Peigneux, A.; Puentes-Pardo, J.D.; Rodríguez-Navarro, A.B.; Hincke, M.T.; Jimenez-Lopez, C.: Development and characterization of magnetic eggshell membranes for lead removal from wastewater. Ecotoxicol. Environ. Saf. 192, 110307 (2020). https://doi.org/10.1016/j.ecoenv.2020.110307

    Article  CAS  PubMed  Google Scholar 

  3. Zhang, Y.; Chen, Y.; Kang, Z.-W.; Gao, X.; Zeng, X.; Liu, M.; Yang, D.-P.: Waste eggshell membrane-assisted synthesis of magnetic CuFe2O4 nanomaterials with multifunctional properties (adsorptive, catalytic, antibacterial) for water remediation. Colloids Surf. Physicochem. Eng. Asp. 612, 125874 (2021). https://doi.org/10.1016/j.colsurfa.2020.125874

    Article  CAS  Google Scholar 

  4. Vijayaraghavan, K.; Joshi, U.M.: Chicken Eggshells Remove Pb(II) Ions from Synthetic Wastewater. Environ. Eng. Sci. 30, 67–73 (2013). https://doi.org/10.1089/ees.2012.0038

    Article  CAS  Google Scholar 

  5. Baláž, M.; Bujňáková, Z.; Baláž, P.; Zorkovská, A.; Danková, Z.; Briančin, J.: Adsorption of cadmium(II) on waste biomaterial. J. Colloid Interface Sci. 454, 121–133 (2015). https://doi.org/10.1016/j.jcis.2015.03.046

    Article  ADS  CAS  PubMed  Google Scholar 

  6. Flores-Cano, J.V.; Leyva-Ramos, R.; Mendoza-Barron, J.; Guerrero-Coronado, R.M.; Aragón-Piña, A.; Labrada-Delgado, G.J.: Sorption mechanism of Cd(II) from water solution onto chicken eggshell. Appl. Surf. Sci. 276, 682–690 (2013). https://doi.org/10.1016/j.apsusc.2013.03.153

    Article  ADS  CAS  Google Scholar 

  7. Tizo, M.S.; Blanco, L.A.V.; Cagas, A.C.Q.; Dela Cruz, B.R.B.; Encoy, J.C.; Gunting, J.V.; Arazo, R.O.; Mabayo, V.I.F.: Efficiency of calcium carbonate from eggshells as an adsorbent for cadmium removal in aqueous solution. Sustain. Environ. Res. 28, 326–332 (2018). https://doi.org/10.1016/j.serj.2018.09.002

    Article  CAS  Google Scholar 

  8. Ahmad, R.; Kumar, R.; Haseeb, S.: Adsorption of Cu2+ from aqueous solution onto iron oxide coated eggshell powder: Evaluation of equilibrium, isotherms, kinetics, and regeneration capacity. Arab. J. Chem. 5, 353–359 (2012). https://doi.org/10.1016/j.arabjc.2010.09.003

    Article  CAS  Google Scholar 

  9. Chojnacka, K.: Biosorption of Cr(III) ions by eggshells. J. Hazard. Mater. 121, 167–173 (2005). https://doi.org/10.1016/j.jhazmat.2005.02.004

    Article  CAS  PubMed  Google Scholar 

  10. Yeddou Mezenner, N.; Bensmaili, A.: Equilibrium and kinetic modelling of iron adsorption by eggshells in a batch system: effect of temperature. Desalination 206, 127–134 (2007). https://doi.org/10.1016/j.desal.2006.04.052

    Article  CAS  Google Scholar 

  11. Yeddou Mezenner, N.Y.; Bensmaili, A.: Kinetics and thermodynamic study of phosphate adsorption on iron hydroxide-eggshell waste. Chem. Eng. J. 147, 87–96 (2009). https://doi.org/10.1016/j.cej.2008.06.024

    Article  CAS  Google Scholar 

  12. Bhaumik, R.; Mondal, N.; Das, B.; Roy, P.; Pal, K.; Das, C.; Banerjee, A.; Datta, J.: Eggshell powder as an adsorbent for removal of fluoride from aqueous solution: equilibrium, kinetic and thermodynamic studies. J. Chem. (2012). https://doi.org/10.1155/2012/790401

    Article  Google Scholar 

  13. Moosavi, A.; Amooey, A.A.; Mir, A.A.; Marzbali, M.H.: Extraordinary adsorption of acidic fuchsine and malachite green onto cheap nano-adsorbent derived from eggshell. Chin. J. Chem. Eng. 28, 1591–1602 (2020). https://doi.org/10.1016/j.cjche.2020.02.031

    Article  CAS  Google Scholar 

  14. Chowdhury, S.; Das, P.: Utilization of a domestic waste-Eggshells for removal of hazardous Malachite Green from aqueous solutions. Environ. Prog. Sustain. Energy 31, 415–425 (2012). https://doi.org/10.1002/ep.10564

    Article  CAS  Google Scholar 

  15. Ehrampoush, M.H.; Ghanizadeh, G.; Ghaneian, M.T.: Equilibrium and kinetics study of reactive red 123 dye removal from aqueous solution by adsorption on eggshell. Iran. J. Environ. Health. Sci. Eng. 8(2), 101–108 (2011)

    CAS  Google Scholar 

  16. Zulfikar, M.A.; Mariske, E.D.; Djajanti, S.D.: Adsorption of lignosulfonate compounds using powdered eggshell, Songklanakarin. J. Sci. Technol. 34, 309–316 (2012)

    CAS  Google Scholar 

  17. Tsai, W.-T.; Hsien, K.-J.; Hsu, H.-C.; Lin, C.-M.; Lin, K.-Y.; Chiu, C.-H.: Utilization of ground eggshell waste as an adsorbent for the removal of dyes from aqueous solution. Bioresour. Technol. 99, 1623–1629 (2008). https://doi.org/10.1016/j.biortech.2007.04.010

    Article  CAS  PubMed  Google Scholar 

  18. Köse, T.E.; Kıvanç, B.: Adsorption of phosphate from aqueous solutions using calcined waste eggshell. Chem. Eng. J. 178, 34–39 (2011). https://doi.org/10.1016/j.cej.2011.09.129

    Article  CAS  Google Scholar 

  19. Eletta, O.A.A.; Ajayi, O.A.; Ogunleye, O.O.; Akpan, I.C.: Adsorption of cyanide from aqueous solution using calcinated eggshells: Equilibrium and optimisation studies. J. Environ. Chem. Eng. 4, 1367–1375 (2016). https://doi.org/10.1016/j.jece.2016.01.020

    Article  CAS  Google Scholar 

  20. Elkady, M.F.; Ibrahim, A.M.; El-Latif, M.M.A.: Assessment of the adsorption kinetics, equilibrium and thermodynamic for the potential removal of reactive red dye using eggshell biocomposite beads. Desalination 278, 412–423 (2011). https://doi.org/10.1016/j.desal.2011.05.063

    Article  CAS  Google Scholar 

  21. Barraqué, F., Montes, M.L., Fernandéz, M.A., Mercader, R.C., Candal, R., Torre Sánchez, R. maría: Synthesis of high-saturation magnetization composites by montmorillonite loading with hexadecyl trimethyl ammonium ions and magnetite nucleation for improved effluent sludge handling and dye removal. Appl. Phys. A.. 736 (2020)

  22. Montes, M.L.; Barraqué, F.; Bursztyn Fuentes, A.L.; Taylor, M.A.; Mercader, R.C.; Miehé-Brendlé, J.; Torres Sánchez, R.M.: Effect of synthetic beidellite structural characteristics on the properties of beidellite/Fe oxides magnetic composites as Sr and Cs adsorbent materials. Mater. Chem. Phys. 245, 122760 (2020). https://doi.org/10.1016/j.matchemphys.2020.122760

    Article  CAS  Google Scholar 

  23. Mudhoo, A.; Sillanpää, M.: Magnetic nanoadsorbents for micropollutant removal in real water treatment: a review. Environ. Chem. Lett. 19, 4393–4413 (2021). https://doi.org/10.1007/s10311-021-01289-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. He, C.; Fang, K.; Gong, H.; Liu, J.; Song, X.; Liang, R.; He, Q.; Yuan, Q.; Wang, K.: Advanced organic recovery from municipal wastewater with an enhanced magnetic separation (EMS) system: Pilot-scale verification. Water Res. 217, 118449 (2022). https://doi.org/10.1016/j.watres.2022.118449

    Article  CAS  PubMed  Google Scholar 

  25. Nithya, R.; Thirunavukkarasu, A.; Sathya, A.B.; Sivashankar, R.: Magnetic materials and magnetic separation of dyes from aqueous solutions: a review. Environ. Chem. Lett. 19, 1275–1294 (2021). https://doi.org/10.1007/s10311-020-01149-9

    Article  CAS  Google Scholar 

  26. Urruchua, F.C.; Fernández, M.A.; Jaworski, M.; Mendoza Zelis, P.; Olivelli, M.S.; Montes, M.L.: Yerba mate waste: transformation to magnetic composites for the adsorption of chemically diverse pollutants. J. Environ. Chem. Eng. 11, 110824 (2023). https://doi.org/10.1016/j.jece.2023.110824

    Article  CAS  Google Scholar 

  27. Barraqué, F.; Montes, M.L.; Fernández, M.A.; Candal, R.; Torres Sánchez, R.M.; Marco-Brown, J.L.: Arsenate removal from aqueous solution by montmorillonite and organo-montmorillonite magnetic materials. Environ. Res. 192, 110247 (2021). https://doi.org/10.1016/j.envres.2020.110247

    Article  CAS  PubMed  Google Scholar 

  28. Zelaya Soulé, M.E.; Barraqué, F.; Morantes, C.F.; Flores, F.M.; Fernández, M.A.; Sánchez, R.M.T.; Montes, M.L.: Magnetic nanocomposite based on montmorillonite, Fe oxides, and hydrothermal carbon: Synthesis, characterization and pollutants adsorption tests. Materialia 15, 100973 (2021). https://doi.org/10.1016/j.mtla.2020.100973

    Article  CAS  Google Scholar 

  29. Barraqué, F.; Montes, M.L.; Fernández, M.A.; Mercader, R.C.; Candal, R.J.; Torres Sánchez, R.M.: Synthesis and characterization of magnetic-montmorillonite and magnetic-organo-montmorillonite: Surface sites involved on cobalt sorption. J. Magn. Magn. Mater. 466, 376–384 (2018). https://doi.org/10.1016/j.jmmm.2018.07.052

    Article  ADS  CAS  Google Scholar 

  30. Rocha, L.S.; Pereira, D.; Sousa, É.; Otero, M.; Esteves, V.I.; Calisto, V.: Recent advances on the development and application of magnetic activated carbon and char for the removal of pharmaceutical compounds from waters: a review. Sci. Total. Environ. 718, 137272 (2020). https://doi.org/10.1016/j.scitotenv.2020.137272

    Article  ADS  CAS  PubMed  Google Scholar 

  31. Gao, F.; Xu, Z.; Dai, Y.: Removal of tetracycline from wastewater using magnetic biochar: a comparative study of performance based on the preparation method. Environ. Technol. Innov. 24, 101916 (2021). https://doi.org/10.1016/j.eti.2021.101916

    Article  CAS  Google Scholar 

  32. Rodrigo, P.M.; Navarathna, C.; Pham, M.T.H.; McClain, S.J.; Stokes, S.; Zhang, X.; Perez, F.; Gunatilake, S.R.; Karunanayake, A.G.; Anderson, R.; Thirumalai, R.V.K.G.; Mohan, D.; Pittman, C.U.; Mlsna, T.E.: Batch and fixed bed sorption of low to moderate concentrations of aqueous per- and poly-fluoroalkyl substances (PFAS) on Douglas fir biochar and its Fe3O4 hybrids. Chemosphere 308, 136155 (2022). https://doi.org/10.1016/j.chemosphere.2022.136155

    Article  CAS  PubMed  Google Scholar 

  33. Elanchezhiyan, S.S.D.; Karthikeyan, P.; Rathinam, K.; Hasmath-Farzana, M.; Park, C.M.: Magnetic kaolinite immobilized chitosan beads for the removal of Pb(II) and Cd(II) ions from an aqueous environment. Carbohydr. Polym. 261, 117892 (2021). https://doi.org/10.1016/j.carbpol.2021.117892

    Article  CAS  PubMed  Google Scholar 

  34. Ren, J.; Bopape, M.; Setshedi, K.; Kitinya, J.; Onyango, M.: Sorption of Pb(II) and Cu(II) by low-cost magnetic eggshells-Fe3O4 powder. Chem. Ind. Chem. Eng. Q. 18, 221–231 (2012). https://doi.org/10.2298/CICEQ110919063R

    Article  CAS  Google Scholar 

  35. Nasrollahzadeh, M.; Sajadi, S.M.; Hatamifard, A.: Waste chicken eggshell as a natural valuable resource and environmentally benign support for biosynthesis of catalytically active Cu/eggshell, Fe3O4/eggshell and Cu/Fe3O4/eggshell nanocomposites. Appl. Catal. B Environ. 191, 209–227 (2016). https://doi.org/10.1016/j.apcatb.2016.02.042

    Article  CAS  Google Scholar 

  36. Ravi, T.; Sundararaman, S.: Synthesis and characterization of chicken eggshell powder coated magnetic nano adsorbent by an ultrasonic bath assisted co-precipitation for Cr(VI) removal from its aqueous mixture. J. Environ. Chem. Eng. 8, 103877 (2020). https://doi.org/10.1016/j.jece.2020.103877

    Article  CAS  Google Scholar 

  37. Prabowo, B.; Khairunnisa, T.; Nandiyanto, A.B.D.: Economic perspective in the production of magnetite (Fe3O4) nanoparticles by co-precipitation method. World Chem. Eng. J. 2, 1–4 (2018)

    Google Scholar 

  38. Fuentes, O.P.; Trujillo, D.M.; Sánchez, M.E.; Abrego-Perez, A.L.; Osma, J.F.; Cruz, J.C.: Embracing sustainability in the industry: a study of environmental, economic, and exergetic performances in large-scale production of magnetite nanoparticles. ACS Sustain. Chem. Eng. 12, 760–772 (2024). https://doi.org/10.1021/acssuschemeng.3c05000

    Article  CAS  Google Scholar 

  39. Tang, S.; Xia, D.; Yao, Y.; Chen, T.; Sun, J.; Yin, Y.; Shen, W.; Peng, Y.: Dye adsorption by self-recoverable, adjustable amphiphilic graphene aerogel. J. Colloid Interface Sci. 554, 682–691 (2019). https://doi.org/10.1016/j.jcis.2019.07.041

    Article  ADS  CAS  PubMed  Google Scholar 

  40. Mastrángelo, M.M.; Valdés, M.E.; Eissa, B.; Ossana, N.A.; Barceló, D.; Sabater, S.; Rodríguez-Mozaz, S.; Giorgi, A.D.N.: Occurrence and accumulation of pharmaceutical products in water and biota of urban lowland rivers. Sci. Total. Environ. 828, 154303 (2022). https://doi.org/10.1016/j.scitotenv.2022.154303

    Article  ADS  CAS  PubMed  Google Scholar 

  41. Li, Z.; Qi, W.; Feng, Y.; Liu, Y.; Ebrahim, S.; Long, J.: Degradation mechanisms of oxytetracycline in the environment. J. Integr. Agric. 18, 1953–1960 (2019). https://doi.org/10.1016/S2095-3119(18)62121-5

    Article  CAS  Google Scholar 

  42. Jin, X.; Li, H.; Zhu, X.; Li, N.; Owens, G.; Chen, Z.: Enhanced removal of oxytetracycline from wastewater using bimetallic Fe/Ni nanoparticles combined with ZIF-8 nanocomposites. J. Environ. Manage. 318, 115526 (2022). https://doi.org/10.1016/j.jenvman.2022.115526

    Article  CAS  PubMed  Google Scholar 

  43. Martínez-Olivas, A.; Torres-Pérez, J.; Balderas-Hernández, P.; Reyes-López, S.Y.: Oxytetracycline sorption onto synthetized materials from hydroxyapatite and aluminosilicates. Water Air Soil Pollut. 231, 264 (2020). https://doi.org/10.1007/s11270-020-04638-3

    Article  ADS  CAS  Google Scholar 

  44. Ramanayaka, S.; Sarkar, B.; Cooray, A.T.; Ok, Y.S.; Vithanage, M.: Halloysite nanoclay supported adsorptive removal of oxytetracycline antibiotic from aqueous media. J. Hazard. Mater. 384, 121301 (2020). https://doi.org/10.1016/j.jhazmat.2019.121301

    Article  CAS  PubMed  Google Scholar 

  45. Bracco, E.B.; Marco-Brown, J.L.; Butler, M.; Candal, R.J.: Degradation of oxytetracycline and characterization of byproducts generated by Fenton or photo-Fenton like processes after adsorption on natural and iron(III)-modified montmorillonite clays. Environ. Nanotechnol. Monit. Manag. 19, 100778 (2023). https://doi.org/10.1016/j.enmm.2023.100778

    Article  CAS  Google Scholar 

  46. Yuan, L.; Yan, M.; Huang, Z.; He, K.; Zeng, G.; Chen, A.; Hu, L.; Li, H.; Peng, M.; Huang, T.; Chen, G.: Influences of pH and metal ions on the interactions of oxytetracycline onto nano-hydroxyapatite and their co-adsorption behavior in aqueous solution. J. Colloid Interface Sci. 541, 101–113 (2019). https://doi.org/10.1016/j.jcis.2019.01.078

    Article  ADS  CAS  PubMed  Google Scholar 

  47. Li, Y.; Wang, S.; Zhang, Y.; Han, R.; Wei, W.: Enhanced tetracycline adsorption onto hydroxyapatite by Fe(III) incorporation. J. Mol. Liq. 247, 171–181 (2017). https://doi.org/10.1016/j.molliq.2017.09.110

    Article  ADS  CAS  Google Scholar 

  48. Lach, J.; Ociepa-Kubicka, A.; Mrowiec, M.: Oxytetracycline adsorption from aqueous solutions on commercial and high-temperature modified activated carbons. Energies 14, 3481 (2021). https://doi.org/10.3390/en14123481

    Article  CAS  Google Scholar 

  49. Zhang, H.; Song, X.; Zhang, J.; Liu, Y.; Zhao, H.; Hu, J.; Zhao, J.: Performance and mechanism of sycamore flock based biochar in removing oxytetracycline hydrochloride. Bioresour. Technol. 350, 126884 (2022). https://doi.org/10.1016/j.biortech.2022.126884

    Article  CAS  PubMed  Google Scholar 

  50. Liang, G.; Wang, Z.; Yang, X.; Qin, T.; Xie, X.; Zhao, J.; Li, S.: Efficient removal of oxytetracycline from aqueous solution using magnetic montmorillonite-biochar composite prepared by one step pyrolysis. Sci. Total. Environ. 695, 133800 (2019). https://doi.org/10.1016/j.scitotenv.2019.133800

    Article  ADS  CAS  PubMed  Google Scholar 

  51. Weerasooriyagedara, M.; Ashiq, A.; Gunatilake, S.R.; Giannakoudakis, D.A.; Vithanage, M.: Surface interactions of oxytetracycline on municipal solid waste-derived biochar–montmorillonite composite. Sustain. Environ. 8, 2046324 (2022). https://doi.org/10.1080/27658511.2022.2046324

    Article  CAS  Google Scholar 

  52. Bartonkova, H.; Mashlan, M.; Medrik, I.; Jancik, D.; Zboril, R.: Magnetically modified bentonite as a possible contrast agent in MRI of gastrointestinal tract. Chem. Pap. 61, 413–416 (2007). https://doi.org/10.2478/s11696-007-0057-9

    Article  CAS  Google Scholar 

  53. Lagarec, K., Rancourt, D.: Recoil-Mössbauer Spectral Analysis Software for Windows (1998)

  54. Nakamoto, K.: Infrared and Raman Spectra of Inorganic and Coordination Compounds: Part A: Theory and Applications in Inorganic Chemistry (2008)

  55. Sócrates, G.: Infrared Characteristic Group Frequencies: Tables and Charts (2004)

  56. Cui, H.; Ren, W.; Lin, P.; Liu, Y.: Structure control synthesis of iron oxide polymorph nanoparticles through an epoxide precipitation route. J. Exp. Nanosci. 8, 869–875 (2013). https://doi.org/10.1080/17458080.2011.616541

    Article  CAS  Google Scholar 

  57. Vandenberghe, R.E.; De Grave, E.: Application of Mössbauer spectroscopy in earth sciences. In: Yoshida, Y.; Langouche, G. (Eds.) Mössbauer Spectroscopy: Tutorial Book, pp. 91–185. Springer, Berlin (2013)

    Chapter  Google Scholar 

  58. Graf, D.L.: Crystallographic tables for the rhombohedral carbonates. Am. Mineral. 46, 1283–1316 (1961)

    CAS  Google Scholar 

  59. Wechsler, B.A.; Lindsley, D.H.; Prewitt, C.T.: Crystal structure and cation distribution in titanomagnetites (Fe3xTixO4). Am. Mineral. 69, 754–770 (1984)

    CAS  Google Scholar 

  60. Dunlop, D.J.: Superparamagnetic and single-domain threshold sizes in magnetite. J. Geophys. Res. 1896–1977(78), 1780–1793 (1973). https://doi.org/10.1029/JB078i011p01780

    Article  ADS  Google Scholar 

  61. Mooney, R.W.; Keenan, A.G.; Wood, L.A.: Adsorption of water vapor by montmorillonite. I. Heat of desorption and application of BET theory. J. Am. Chem. Soc. 74, 1367–1371 (1952). https://doi.org/10.1021/ja01126a001

    Article  ADS  CAS  Google Scholar 

  62. Torres Sánchez, R.M.: Mechanochemical effects on physicochemical parameters of homoionic smectite. Colloids Surf. Physicochem. Eng. Asp. 127, 135–140 (1997). https://doi.org/10.1016/S0927-7757(97)00105-2

    Article  Google Scholar 

  63. Wan, J.; Simon, S.; Deluchat, V.; Dictor, M.-C.; Dagot, C.: Adsorption of As III, As V and dimethylarsinic acid onto synthesized lepidocrocite. J. Environ. Sci. Health Part A. 48, 1272–1279 (2013). https://doi.org/10.1080/10934529.2013.776916

    Article  CAS  Google Scholar 

  64. Zhong, D.; Feng, W.; Ma, W.; Liu, X.; Ma, J.; Zhou, Z.; Du, X.; He, F.: Goethite and lepidocrocite catalyzing different double-oxidant systems to degrade chlorophenol. Environ. Sci. Pollut. Res. 29, 72764–72776 (2022). https://doi.org/10.1007/s11356-022-20855-1

    Article  CAS  Google Scholar 

  65. Nurdin, I.: Ridwan, satriananda: the effect of pH and time on the stability of superparamagnetic maghemite nanoparticle suspensions. MATEC Web Conf. 39, 01001 (2016). https://doi.org/10.1051/matecconf/20163901001

    Article  CAS  Google Scholar 

  66. Kulshrestha, P.; Giese, R.F.; Aga, D.S.: Investigating the molecular interactions of oxytetracycline in clay and organic matter: insights on factors affecting its mobility in soil. Environ. Sci. Technol. 38, 4097–4105 (2004). https://doi.org/10.1021/es034856q

    Article  ADS  CAS  PubMed  Google Scholar 

  67. Nguyen, D.T.C.; Vo, D.-V.N.; Nguyen, C.N.Q.; Pham, L.H.A.; Le, H.T.N.; Nguyen, T.T.T.; Tran, T.V.: Box-Behnken design, kinetic, and isotherm models for oxytetracycline adsorption onto Co-based ZIF-67. Appl. Nanosci. 11, 2347–2359 (2021). https://doi.org/10.1007/s13204-021-01954-w

    Article  ADS  CAS  Google Scholar 

  68. Xie, H.; Pan, W.; Zhou, Y.; Li, P.; Zou, G.; Du, L.; Guo, X.: Micro- and nano-plastics play different roles in oxytetracycline adsorption on natural zeolite: additional adsorbent and competitive adsorbate. J. Environ. Chem. Eng. 11, 109648 (2023). https://doi.org/10.1016/j.jece.2023.109648

    Article  CAS  Google Scholar 

Download references

Acknowledgements

OL, HEC, and FCU acknowledge CONICET’s doctoral scholarship; all the authors acknowledge CONICET, CETMIC, and IFLP who provided the infrastructure for the study. Authors acknowledge the financial support from the Argentine Ministry of Science (ANPCyT—PICT 2018-01536), Exactas Sciences Faculty, UNLP (EX002), and CONICET (PUE 066, PIBBA 0043).

Funding

This study was financially supported by the projects from the Argentine Ministry of Science (ANPCyT—PICT 2018-01536), Exactas Sciences Faculty, UNLP (EX002), and CONICET (PUE 066, PIBBA 0043).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection, and analysis were performed by OL, MAF, and MLM. All authors have read and approved the final manuscript.

Corresponding author

Correspondence to M. L. Montes.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lopez, O., Fernández, M.A., Horue, M. et al. Fe Oxides–Eggshell Composites: Development, Characterization, and Oxytetracycline Adsorption Test. Arab J Sci Eng (2024). https://doi.org/10.1007/s13369-024-08815-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13369-024-08815-y

Keywords

Navigation