Skip to main content

Advertisement

Log in

Functionalization of Xonotlite Composite with Amidoxime Groups for the Sorption of Cu (II) Ion

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

The xonotlite was synthesized from eggshell waste and modified with toluene diisocyanate (TDI). The xonotlite and amidoxime-modified xonotlite were characterized by scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), and X-ray diffraction (XRD). FTIR revealed that the amidoxime group was successfully grafted onto the xonotlite. Factors affecting adsorption such as solution pH, adsorbent dose, contact time, and initial concentrations were set up to improve the adsorption performance. The adsorption of Cu (II) on all the adsorbents was well-described by the Freundlich model and pseudo-second-order model. The amidoxime-modified xonotlite showed rapid removal efficiency and reached equilibrium in 45 min at the pH of 5. The maximum adsorption capacities for Cu (II) (713.2 mg/g) on the modified xonotlite were 35.8% higher than that on the unmodified xonotlite. The existence of competing ions like K(I) and Na(I) had little effect on the Cu(II) removal efficiency. Therefore, the modified xonotlite could be used as a feasible adsorbent for the removal of Cu (II) in treating wastewater.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Ahmad, M., Manzoor, K., & Ikram, S. (2017). Versatile nature of hetero-chitosan based derivatives as biodegradable adsorbent for heavy metal ions; a review. International Journal of Biological Macromolecules, 105, 190–203.

    CAS  Google Scholar 

  • Akl, Z. F., El-Saeed, S. M., & Atta, A. M. (2016). In-situ synthesis of magnetite acrylamide aminoamidoxime nanocomposite adsorbent for highly efficient sorption of U(VI) ions. Journal of Industrial and Engineering Chemistry, 34, 105–116.

    CAS  Google Scholar 

  • Albadarin, A. B., Mangwandi, C., Al-Muhtaseb, A. H., Walker, G. M., Allen, S. J., & Ahmad, M. N. M. (2012). Kinetic and thermodynamics of chromium ions adsorption onto low-cost dolomite adsorbent. Chemical Engineering Journal, 179, 193–202.

    CAS  Google Scholar 

  • Alexandratos, S. D., Zhu, X. P., Florent, M., & Sellin, R. (2016). Polymer-supported bifunctional amidoximes for the sorption of uranium from seawater. Industrial and Engineering Chemistry Research, 55, 4208–4216.

    CAS  Google Scholar 

  • Algothmi, W. M., Bandaru, N. M., Yu, Y., Shapter, J. G., & Ellis, A. V. (2013). Alginate-graphene oxide hybrid gel beads: An efficient copper adsorbent material. Journal of Colloid and Interface Science, 397, 32–38.

    CAS  Google Scholar 

  • Alslaibi, T. M., Abustan, I., Ahmad, M. A., & Abu, F. A. (2014). Kinetics and equilibrium adsorption of iron (II), lead (II), and copper (II) onto activated carbon prepared from olive stone waste. Desalination and Water Treatment, 52, 7887–7897.

    CAS  Google Scholar 

  • Aydın, Y. A., & Aksoy, N. D. (2009). Adsorption of chromium on chitosan: Optimization, kinetics and thermodynamics. Chemical Engineering Journal, 151, 188–194.

    Google Scholar 

  • Badruddoza, A. M., Shawon, Z. B., Daniel, T. W. J., Hidajat, K., & Uddin, M. S. (2013). Fe3O4/cyclodextrin polymer nanocomposites for selective heavy metalsremoval from industrial wastewater. Carbohydrate Polymers, 91, 322–332.

    CAS  Google Scholar 

  • Barron-Zambrano, J., Laborie, S., Viers, P., Rakib, M., & Durand, G. (2004). Mercury removal and recovery from aqueous solutions by coupled complexation-ultrafiltration and electrolysis. Journal of Membrane Science, 229, 179–186.

    CAS  Google Scholar 

  • Bayramoglu, G., & Arica, M. Y. (2016). MCM-41 silica particles grafted with polyacrylonitrile: Modification in to amidoxime and carboxyl groups for enhanced uranium removal from aqueous medium. Microporous and Mesoporous Materials, 226, 117–124.

    CAS  Google Scholar 

  • Bayramoglu, G., Akbulut, A., & Arica, M. Y. (2015). Study of polyethyleneimine- and amidoximefunctionalized hybrid biomass of Spirulina (Arthrospira) platensis for adsorption of uranium (VI) ion. Environmental Science and Pollution Research, 22, 17998–18010.

    CAS  Google Scholar 

  • De Angelis, G. (2017). Recycling of eggshell waste into low-cost adsorbent for Ni removal from wastewater. Journal of Cleaner Production, 164, 1497–1506.

    Google Scholar 

  • El Samrani, A. G., Lartiges, B. S., & Villiéras, F. (2008). Chemical coagulation of combined sewer overflow: Heavy metal removal and treatment optimization. Water Research, 42, 951–960.

    Google Scholar 

  • El-Maghrabi, H. H., Younes, A. A., Salem, A. R., Rabie, K., & El-shereafy, E.-s. (2019). Magnetically modified hydroxyapatite nanoparticles for the removal of uranium (VI): Preparation, characterization and adsorption optimization. Journal of Hazardous Materials, 378, 120703.

    CAS  Google Scholar 

  • Elwakeel, K. Z., El-Bindary, A. A., Kouta, E. Y., & Guibal, E. (2017). Functionalization of polyacrylonitrile/Na-Y-zeolite composite with amidoxime groups for the sorption of Cu (II), Cd (II) and Pb (II) metal ions. Chemical Engineering Journal. https://doi.org/10.1016/j.cej.2017.09.091.

  • Ghassabzadeh, H., Mohadespour, A., Torab-Mostaedi, M., Zaheri, P., Maragheh, M. G., & Taheri, H. (2010). Adsorption of Ag, Cu and Hg from aqueous solutions using expanded perlite. Journal of Hazardous Materials, 177, 950–955.

    CAS  Google Scholar 

  • Gonzalez, M. A., Pavlovic, I., & Barriga, C. (2015). Cu (II), Pb (II) and Cd (II) sorption on different layered double hydroxides: A kinetic and thermodynamic study and competing factors. Chemical Engineering Journal, 269, 221–228.

    CAS  Google Scholar 

  • Guo, X., Huang, L., Li, C., Hu, J., Wu, G., & Huai, P. (2015). Sequestering uranium from UO2(CO3)(3)(4−) in seawater with amine ligands: Density functional theory calculations. Physical Chemistry Chemical Physics, 17, 14662–14673.

    CAS  Google Scholar 

  • Hosseinzadeh, H., & Ramin, S. (2017). Effective removal of copper from aqueous solutions by modified magnetic chitosan/graphene oxide nanocomposites. Biomac. https://doi.org/10.1016/j.ijbiomac.2018.03.028.

  • Hu, X., Liu, Y., Wang, H., Zeng, G., Hu, X., Guo, Y., Li, T., Chen, A., Jiang, L., & Guo, F. (2015). Adsorption of copper by magnetic graphene oxide-supported β-cyclodextrin: Effects of pH, ionic strength, background electrolytes, and citric acid. Chemical Engineering Research and Design, 93, 675–683.

    CAS  Google Scholar 

  • Jiang, W., Wang, W., Pan, B., Zhang, Q., Zhang, W., & Lv, L. (2014). Facile fabrication of magnetic chitosan beads of fast kinetics and high capacity for copper removal. ACS Applied Materials & Interfaces, 6, 3421–3426.

    CAS  Google Scholar 

  • Konuklu, Y., & Ersoy, O. (2017). Fabrication and characterization of form-stable phase change material/xonotlite microcomposites. Solar Energy Materials & Solar Cells, 168, 130–135.

    CAS  Google Scholar 

  • Kumar, R., Bishnoi, N. R., & Bishnoi, K. (2008). Biosorption of chromium(VI) from aqueous solution and electroplating wastewater using fungal biomass. Chemical Engineering Journal, 135, 202–208.

    CAS  Google Scholar 

  • Lee, K. Y., Kim, K. W., Park, M., Kim, J., Oh, M., Lee, E. H., Chung, D. Y., & Moon, J. K. (2016). Novel application of nanozeolite for radioactive cesium removal from high-salt wastewater. Water Research, 95, 134–141.

    CAS  Google Scholar 

  • Li, J., Zuo, K., Wu, W., Xu, Z., Yi, Y., Jing, Y., Dai, H., & Fang, G. (2018). Shape memory aerogels from nanocellulose and polyethyleneimine as a novel adsorbent for removal of Cu(II) and Pb(II). Carbohydrate Polymers, 196, 376–384.

    CAS  Google Scholar 

  • Liu, F., Wang, X. D., & Cao, J. X. (2012). Effect of ultrasonic process on carbide slag activity and synthesized xonotlite. Physics Procedia, 25, 56–62.

    Google Scholar 

  • Ma, Y., Liu, W. J., Zhang, N., Li, Y. S., Jiang, H., & Sheng, G. P. (2014). Polyethylenimine modified biochar adsorbent for hexavalent chromium removal from the aqueous solution. Bioresource Technology, 169, 403–408.

    CAS  Google Scholar 

  • Ma, X., Liu, X., Anderson, D. P., & Chang, P. R. (2015). Modification of porous starch for the adsorption of heavy metal ions from aqueous solution. Food Chemistry, 181, 133–139.

    CAS  Google Scholar 

  • Mauchauffee, S., & Meux, E. (2007). Use of sodium decanoate for selective precipitation of metals contained in industrial wastewater. Chemosphere., 69, 763–768.

    CAS  Google Scholar 

  • Meseldzija, S., et al. (2019). Utilization of agro-industrial waste for removal of copper ions from aqueous solutions and mining-wastewater. Journal of Industrial and Engineering Chemistry. https://doi.org/10.1016/j.jiec.2019.03.031.

  • Mittal, H., Maity, A., & Ray, S. S. (2015). Poly(acrylamide-co-acrylonitrile) biodegradable hydrogel: Isotherms and kinetic models. The Journal of Physical Chemistry. B, 119, 2026–2039.

    CAS  Google Scholar 

  • Mouedhen, G., Feki, M., De, P.-W. M., & Ayedi, H. F. (2009). Electrochemical removal of Cr (VI) from aqueous media using iron and aluminum as electrode materials: Towards a better understanding of the involved phenomena. Journal of Hazardous Materials, 168, 983–991.

    CAS  Google Scholar 

  • Munthali, M. W., Johan, E., Aono, H., & Matsue, N. (2018). Cs+ and Sr2+ adsorption selectivity of zeolites in relation to radioactive decontamination. Journal of Asian Ceramic Societies, 3, 245–250.

    Google Scholar 

  • Oyola, Y., & Dai, S. (2016). High surface-area amidoxime-based polymer fibers co-grafted with various acid monomers yielding increased adsorption capacity for the extraction of uranium from seawater. Dalton Transactions, 45, 8824–8834.

    CAS  Google Scholar 

  • Saeed, K., Haider, S., Oh, T. J., & Park, S. Y. (2008). Preparation of amidoxime-modified polyacrylonitrile (PAN-oxime) nanofibers and their applications to metal ions adsorption. Journal of Membrane Science, 322, 400–405.

    CAS  Google Scholar 

  • Sahraei, R., Sekhavat, P. Z., & Ghaemy, M. (2017). Novel magnetic bio-sorbent hydrogel beads based on modified gum tragacanth/graphene oxide: Removal of heavy metals and dyes from water. Journal of Cleaner Production, 142, 2973–2984.

    CAS  Google Scholar 

  • Shi, Y., Zhanga, T., Renc, H., Krused, A., & Cuia, R. (2018). Polyethylene imine modified hydrochar adsorption for chromium (VI) and nickel (II) removal from aqueous solution. Bioresource Technology, 247, 370–379.

    CAS  Google Scholar 

  • Suhas, Gupta, V. K., Carrott, P. J. M., Singh, R., Chaudhary, M., & Kushwaha, S. (2016). Cellulose: A review as natural, modified and activated carbon adsorbent. Bioresource Technology, 216, 1066–1076.

    CAS  Google Scholar 

  • Sun, X., Chen, J. H., Su, Z., Huang, Y., & Dong, X. (2016). Highly effective removal of Cu(II) by a novel 3- aminopropyltriethoxysilane functionalized polyethyleneimine/sodium alginate porous membrane adsorbent. Chemical Engineering Journal, 290, 1–11.

    CAS  Google Scholar 

  • Sutirman, Z. A., Sanagi, M. M., Karim, K. J. A., Ibrahim, W. A. W., & Jume, B. H. (2018). Equilibrium, kinetic and mechanism studies of Cu (II) and Cd (II) ions adsorption by modified chitosan beads. International Journal of Biological Macromolecules, 116, 255–263.

    CAS  Google Scholar 

  • Tang, J., Zhang, L., Yu, Z., Liu, X. M., Wang, Y. Q., Wen, P., & Zhou, S. G. (2019). Insight into complexation of Cu (II) to hyperthermophilic compost-derived humic acids by EEM-PARAFAC combined with heterospectral two dimensional correlation analyses. Science of the Total Environment, 656, 29–38.

    CAS  Google Scholar 

  • Tangtubtim, S., & Saikrasun, S. (2019). Effective removals of copper (II) and lead (II) cations from aqueous solutions by polyethyleneimine-immobilized pineapple fiber. Bioresource Technology, 7, 100188.

    Google Scholar 

  • Tayade, P. B., & Adivarekar, R. V. (2013). Adsorption kinetics and thermodynamic study of Cuminum cyminum L. dyeing on silk. Journal of Environmental Chemical Engineering, 1, 1336–1340.

    CAS  Google Scholar 

  • Teoh, Y. P., Khan, M. A., & Choong, T. S. Y. (2013). Kinetic and isotherm studies for lead adsorption from aqueous phase on carbon coated monolith. Chemical Engineering Journal, 217, 248–255.

    CAS  Google Scholar 

  • Thakur, A. K., Nisola, G. M., Limjuco, L. A., Parohinog, K. J., Torrejos, R. E. C., Shahi, V. K., & Chung, W. J. (2017). Polyethylenimine-modified mesoporous silica adsorbent for simultaneous removal of Cd (II) and Ni (II) from aqueous solution. Journal of Industrial and Engineering Chemistry, 49, 133–144.

    CAS  Google Scholar 

  • Tseng, R. L., & Wu, F. C. (2008). Inferring the favorable adsorption level and the concurrent multi-stage process with the Freundlich constant. Journal of Hazardous Materials, 155, 277–287.

    CAS  Google Scholar 

  • Ummartyotin, S., & Tangnorawich, B. (2015). Utilization of eggshell waste as raw material for synthesis of hydroxyapatite. Colloid & Polymer Science, 293, 2477–2483.

    CAS  Google Scholar 

  • Verma, V. K., Tewari, S., & Rai, J. P. N. (2008). Ion exchange during heavy metal bio-sorption from aqueous solution by dried biomass of macrophytes. Bioresource Technology, 99, 1932–1938.

    CAS  Google Scholar 

  • Vivero-Escoto, J. L., Carboni, M., Abney, C. W., Krafft, K. E., & Lin, W. (2013). Organo-functionalized mesoporous silicas for efficient uranium extraction. Microporous and Mesoporous Materials, 180, 22–31.

    CAS  Google Scholar 

  • Wang, F. H., Li, H. P., Liu, Q., Li, Z. S., Li, R. M., Zhang, H. S., Liu, L. H., Emelchenko, G. A., & Wang, J. (2016). A graphene oxide/amidoxime hydrogel for enhanced uranium capture. Scientific Reports, 6.

  • Xing, Z., Hu, J. T., Wang, M. H., Zhang, W. L., Li, S. N., Gao, Q. H., & Wu, G. Z. (2013). Properties and evaluation of amidoxime-based UHMWPE fibrous adsorbent for extraction of uranium from seawater. Science China. Chemistry, 56, 1504–1509.

    CAS  Google Scholar 

  • Yan, J. S., Li, Y., Li, H. R., Zhou, Y. Z., Xiao, F. H., Li, B. L., & Ma, X. (2018). Effective removal of ruthenium (III) ions from wastewater by amidoxime modified zeolite X. Microchemical Journal. https://doi.org/10.1016/j.microc.2018.10.047.

  • Yargic, A. S., Sahin, R. Z. Y., Ozbay, N., & Onal, E. (2015). Assessment of toxic copper(II) biosorption from aqueous solution by chemically-treated tomato waste. Journal of Cleaner Production, 88, 152–159.

    CAS  Google Scholar 

  • Yoon, J., Amy, G., Chung, J., Sohn, J., & Yoon, Y. (2009). Removal of toxic ions (chromate, arsenate, and perchlorate) using reverse osmosis, nanofiltration, and ultrafiltration membranes. Chemosphere., 77, 228–235.

    CAS  Google Scholar 

  • Zahri, N. A. M., Jamil, S., Abdullah, L. C., Yaw, T. C. S., Mobarekeh, M. N., Huey, S. J., & Rapeia, N. S. M. (2015). Improved method for preparation of amidoxime modified poly (acrylonitrileco-acrylic acid): Characterizations and adsorption case study. Polymers, 7, 1205–1220.

    CAS  Google Scholar 

  • Zeng, Z. H., Wei, Y. Q., Shen, L., & Hua, D. B. (2015). Cationically charged poly (amidoxime)-grafted polypropylene nonwoven fabric for potential uranium extraction from seawater. Industrial and Engineering Chemistry Research, 54, 8699–8705.

    CAS  Google Scholar 

  • Zeng, J. Y., Zhang, H., Sui, Y., Hu, N., Ding, D. X., Wang, F., Xue, J. H., & Wang, Y. D. (2017). New amidoxime-based material TMP-g-AO for uranium adsorption under seawater conditions. Industrial and Engineering Chemistry Research, 56, 5021–5032.

    CAS  Google Scholar 

  • Zhang, Y., Liu, Y., Wang, X., Sun, Z., Ma, J., Wu, T., Xing, F., & Gao, J. (2014). Porous graphene oxide/carboxymethyl cellulose monoliths, with high metal ion adsorption. Carbohydrate Polymers, 101, 392–400.

    CAS  Google Scholar 

  • Zhao, F., Qin, X., & Feng, S. (2016). Preparation of microgel/sodium alginate composite granular hydrogels and their Cu2+ adsorption properties. RSC Advances, 6, 100511–100518.

    CAS  Google Scholar 

  • Zhou, Y., Fu, S., Zhang, L., Zhan, H., & Levit, M. V. (2014). Use of carboxylated cellulose nanofibrils-filled magnetic chitosan hydrogel beads as adsorbents for Pb (II). Carbohydrate Polymers, 101, 75–82.

    CAS  Google Scholar 

Download references

Funding

This research was supported by the National Natural Science Foundation of China (No. 41977147, No. 41101303), the National Natural Science Foundation of Hunan (No. 11JJ6013), and the Hunan Provincial Natural Science and Hengyang Joint Fund (No. 2016JJ5017).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Zhou.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

ESM 1

(doc 214 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, W., Tang, W. & Xin, J. Functionalization of Xonotlite Composite with Amidoxime Groups for the Sorption of Cu (II) Ion. Water Air Soil Pollut 231, 406 (2020). https://doi.org/10.1007/s11270-020-04776-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-020-04776-8

Keywords

Navigation