Skip to main content
Log in

The Role of Gold-Loaded Copper Oxide Nanoplates in the Formulation of Sensitive EC-SERS Substrates for the Detection of Anti-Cancer Drugs: Spectro–Electro and DFT Studies

  • Research Article-Chemistry
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

A simple one-pot approach for the synthesis of gold-loaded copper oxide (Au–CuOx) nanoplates was employed to develop a sensitive electrochemical surface enhanced Raman scattering (EC-SERS) substrate for the detection of anti-cancer drug hydroxycarbamide (HC). HC has been used for decades as a therapeutic agent against sickle cell anaemia and various cancers. The Au–CuOx substrate was characterized using various spectroscopic and imaging techniques, including XRD, XPS, FTIR, TEM and SEM. The electrochemical impact on the SERS-based sensing capability was investigated by immobilizing the bimetallic material on a conductive glass support acting as a working electrode. First-principle calculations were carried out to predict the electrostatic properties, electron transfer contribution and adsorption energetics of HC molecules on the nanostructured surface. Spectroscopic and theoretical investigations suggested that Au-loaded copper oxide exhibits inherent surface plasmon resonance (SPR) properties that can be notably enhanced by incorporating the electrochemical factor. Several prominent Raman peaks associated with HC and ascribed by the NCN bending, CN stretching, NO stretching, CO stretching, and NH2 wagging vibrational modes showed substantial enhancements upon the electrochemically induced interaction between the SERS substrate and the drug molecules. A limit of detection of one-tenth of nanomolar concentration could be achieved under optimum conditions. The presented methodology could be potential in the context of biomedical laboratories for the sake of quick and reliable assessment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Teng, S.; Ma, C.; Yu, Y.; Yi, C.: Hydroxyurea promotes TET1 expression and induces apoptosis in osteosarcoma cells. Biosci. Rep. (2019). https://doi.org/10.1042/BSR20190456/219136

  2. Teng, J.; Hejazi, S.; Hiddingh, L.; Carvalho, L.; De Gooijer, M.C.; Wakimoto, H.; Barazas, M.; Tannous, M.; Chi, A.S.; Noske, D.P.; Wesseling, P.; Wurdinger, T.; Batchelor, T.T.; Tannous, B.A.: Recycling drug screen repurposes hydroxyurea as a sensitizer of glioblastomas to temozolomide targeting de novo DNA synthesis, irrespective of molecular subtype. Neuro Oncol. 20, 642–654 (2018). https://doi.org/10.1093/NEUONC/NOX198

    Article  Google Scholar 

  3. Angona, A.; Bellosillo, B.; Alvarez-Larrán, A.; Martínez-Avilés, L.; Camacho, L.; Pairet, S.; Fernández-Rodriguez, M.C.; Ancochea, À.; Besses, C.: Genetic predisposition to molecular response in patients with myeloproliferative neoplasms treated with hydroxycarbamide. Leuk. Res. 37, 917–921 (2013). https://doi.org/10.1016/J.LEUKRES.2013.03.013

    Article  Google Scholar 

  4. Berthaut, I.; Bachir, D.; Kotti, S.; Chalas, C.; Stankovic, K.; Eustache, F.; Ravel, C.; Habibi, A.; Brailly-Tabard, S.; Lévy-Dutel, L.; Bleibtreu, A.; Simon, T.; Galactéros, F.; Lionnet, F.; Mandelbaum, J.: Adverse effect of hydroxyurea on spermatogenesis in patients with sickle cell anemia after 6 months of treatment. Blood 130, 2354–2356 (2017). https://doi.org/10.1182/BLOOD-2017-03-771857

    Article  Google Scholar 

  5. Liebelt, E.L.; Balk, S.J.; Faber, W.; Fisher, J.W.; Hughes, C.L.; Lanzkron, S.M.; Lewis, K.M.; Marchetti, F.; Mehendale, H.M.; Rogers, J.M.; Shad, A.T.; Skalko, R.G.; Stanek, E.J.; Shelby, M.D.: NTP-CERHR expert panel report on the reproductive and developmental toxicity of hydroxyurea. Birth Defects Res. B Dev. Reprod. Toxicol. 80, 259–366 (2007). https://doi.org/10.1002/BDRB.20123

    Article  Google Scholar 

  6. Marahatta, A.; Ware, R.E.: Hydroxyurea: analytical techniques and quantitative analysis. Blood Cells Mol. Dis. 67, 135–142 (2017). https://doi.org/10.1016/J.BCMD.2017.08.009

    Article  Google Scholar 

  7. Pujari, M.P.; Barrientos, A.; Muggia, F.M.; Koda, R.T.: Determination of hydroxyurea in plasma and peritoneal fluid by high-performance liquid chromatography using electrochemical detection. J. Chromatogr. B Biomed. Sci. Appl. 694, 185–191 (1997). https://doi.org/10.1016/S0378-4347(97)00120-5

    Article  Google Scholar 

  8. Hai, X.; Guo, M.; Gao, C.; Zhou, J.: Quantification of hydroxyurea in human plasma by HPLC–MS/MS and its application to pharmacokinetics in patients with chronic myeloid leukaemia. J. Pharm. Biomed. Anal. 137, 213–219 (2017). https://doi.org/10.1016/J.JPBA.2017.01.008

    Article  Google Scholar 

  9. Cheuquepán, W.; Orts, J.M.; Rodes, A.: Hydroxyurea electrooxidation at gold electrodes. In situ infrared spectroelectrochemical and DFT characterization of adsorbed intermediates. Electrochim. Acta 246, 951–962 (2017). https://doi.org/10.1016/J.ELECTACTA.2017.06.091

    Article  Google Scholar 

  10. Pathak, P.K.; Kumar, A.; Prasad, B.B.: Functionalized nitrogen doped graphene quantum dots and bimetallic Au/Ag core-shell decorated imprinted polymer for electrochemical sensing of anticancerous hydroxyurea. Biosens. Bioelectron. 127, 10–18 (2019). https://doi.org/10.1016/J.BIOS.2018.11.055

    Article  Google Scholar 

  11. Haroon, M.; Tahir, M.; Nawaz, H.; Majeed, M.I.; Al-Saadi, A.A.: Surface-enhanced Raman scattering (SERS) spectroscopy for prostate cancer diagnosis: a review. Photodiagnosis Photodyn. Ther. 37, 102690 (2022). https://doi.org/10.1016/J.PDPDT.2021.102690

    Article  Google Scholar 

  12. Haroon, M.; Iali, W.; Al-Saadi, A.A.: Conformational analysis and concentration detection of linuron: spectroscopic NMR and SERS study. Spectrochim. Acta A Mol. Biomol. Spectrosc. 263, 120223 (2021). https://doi.org/10.1016/J.SAA.2021.120223

    Article  Google Scholar 

  13. Haroon, M.; Iali, W.; Saleh, T.A.; Al-Saadi, A.A.: NMR evidence for hydrogen bonding stabilized anti conformation of 1-methoxy-1-methyl-3-phenylurea and the concentration detection by SERS. J. Mol. Liq. 357, 119096 (2022). https://doi.org/10.1016/J.MOLLIQ.2022.119096

    Article  Google Scholar 

  14. Mahar, N.; Haroon, M.; Saleh, T.A.; Al-Saadi, A.A.: Spectroanalytical SERS-based detection of trace-level procainamide using green-synthesized gold nanoparticles. Surf. Interf. 31, 102059 (2022). https://doi.org/10.1016/J.SURFIN.2022.102059

    Article  Google Scholar 

  15. Schuepfer, D.B.; Badaczewski, F.; Guerra-Castro, J.M.; Hofmann, D.M.; Heiliger, C.; Smarsly, B.; Klar, P.J.: Assessing the structural properties of graphitic and non-graphitic carbons by Raman spectroscopy. Carbon N Y. 161, 359–372 (2020). https://doi.org/10.1016/J.CARBON.2019.12.094

    Article  Google Scholar 

  16. Zhang, W.; Ma, J.; Sun, D.W.: Raman spectroscopic techniques for detecting structure and quality of frozen foods: principles and applications. Crit. Rev. Food Sci. Nutr. 61, 2623–2639 (2020). https://doi.org/10.1080/10408398.2020.1828814

    Article  Google Scholar 

  17. Thomas, G.J.: Raman spectroscopy of protein and nucleic acid assemblies. Annu. Rev. Biophys. Biomol. Struct. 28, 1–27 (2003). https://doi.org/10.1146/ANNUREV.BIOPHYS.28.1.1

    Article  Google Scholar 

  18. Al-Saadi, A.A.; Haroon, M.; Popoola, S.A.; Saleh, T.A.: Sensitive SERS detection and characterization of procaine in aqueous media by reduced gold nanoparticles. Sens. Actuators B Chem. 304, 127057 (2020). https://doi.org/10.1016/J.SNB.2019.127057

    Article  Google Scholar 

  19. Haroon, M.; Abdulazeez, I.; Saleh, T.A.; Al-Saadi, A.A.: SERS-based trace-level quantification of sulindac: spectroscopic and molecular modeling evaluation. J. Mol. Liq. 312, 113402 (2020). https://doi.org/10.1016/j.molliq.2020.113402

    Article  Google Scholar 

  20. Haroon, M.; Abdulazeez, I.; Saleh, T.A.; Al-Saadi, A.A.: Electrochemically modulated SERS detection of procaine using FTO electrodes modified with silver-decorated carbon nanosphere. Electrochim. Acta 387, 138463 (2021). https://doi.org/10.1016/J.ELECTACTA.2021.138463

    Article  Google Scholar 

  21. Mahar, N.; Haroon, M.; Saleh, T.A.; Al-Saadi, A.A.: Fast and sensitive detection of procainamide: combined SERS and DFT modeling studies. J. Mol. Liq. 343, 117633 (2021). https://doi.org/10.1016/J.MOLLIQ.2021.117633

    Article  Google Scholar 

  22. Kamran, M.; Haroon, M.; Popoola, S.A.; Almohammedi, A.R.; Al-Saadi, A.A.; Saleh, T.A.: Characterization of valeric acid using substrate of silver nanoparticles with SERS. J. Mol. Liq. 273, 536–542 (2019). https://doi.org/10.1016/J.MOLLIQ.2018.10.037

    Article  Google Scholar 

  23. Puente, C.; Sánchez-Domínguez, M.; Brosseau, C.L.; López, I.: Silver-chitosan and gold-chitosan substrates for surface-enhanced Raman spectroscopy (SERS): effect of nanoparticle morphology on SERS performance. Mater. Chem. Phys. 260, 124107 (2021). https://doi.org/10.1016/J.MATCHEMPHYS.2020.124107

    Article  Google Scholar 

  24. Haroon, M.; Ashraf, M.; Ullah, N.; Nawaz Tahir, M.; Al-Saadi, A.A.: SERS and EC-SERS detection of local anesthetic procaine using Pd loaded highly reduced graphene oxide nanocomposite substrate. Spectrochim. Acta A Mol. Biomol. Spectrosc. 278, 121381 (2022). https://doi.org/10.1016/J.SAA.2022.121381

    Article  Google Scholar 

  25. Ferrando, R.; Jellinek, J.; Johnston, R.L.: Nanoalloys: from theory to applications of alloy clusters and nanoparticles. Chem. Rev. 108, 845–910 (2008). https://doi.org/10.1021/CR040090G

    Article  Google Scholar 

  26. Liu, Y.C.; Yang, K.H.; Yang, S.J.: Sonoelectrochemical synthesis of spike-like gold–silver alloy nanoparticles from bulk substrates and the application on surface-enhanced Raman scattering. Anal. Chim. Acta 572, 290–294 (2006). https://doi.org/10.1016/J.ACA.2006.05.038

    Article  Google Scholar 

  27. Yang, L.; Jiang, X.; Ruan, W.; Zhao, B.; Xu, W.; Lombardi, J.R.: Observation of enhanced Raman scattering for molecules adsorbed on TiO2 nanoparticles: charge-transfer contribution. J. Phys. Chem. C 112, 20095–20098 (2008). https://doi.org/10.1021/JP8074145

    Article  Google Scholar 

  28. Lei, D.Y.; Li, J.; Ong, H.C.: Tunable surface plasmon mediated emission from semiconductors by using metal alloys. Appl. Phys. Lett. 91, 021112 (2007). https://doi.org/10.1063/1.2752770

    Article  Google Scholar 

  29. Shan, G.; Zheng, S.; Chen, S.; Chen, Y.; Liu, Y.: Multifunctional ZnO/Ag nanorod array as highly sensitive substrate for surface enhanced Raman detection. Colloids Surf. B Biointerfaces 94, 157–162 (2012). https://doi.org/10.1016/J.COLSURFB.2012.01.037

    Article  Google Scholar 

  30. Yang, L.; Jiang, X.; Ruan, W.; Yang, J.; Zhao, B.; Xu, W.; Lombardi, J.R.: Charge-transfer-induced surface-enhanced Raman scattering on Ag−TiO2 nanocomposites. J. Phys. Chem. C 113, 16226–16231 (2009). https://doi.org/10.1021/JP903600R

    Article  Google Scholar 

  31. Wang, Y.; Song, W.; Ruan, W.; Yang, J.; Zhao, B.; Lombardi, J.R.: SERS spectroscopy used to study an adsorbate on a nanoscale thin film of CuO coated with Ag. J. Phys. Chem. C 113, 8065–8069 (2009). https://doi.org/10.1021/JP900052Q

    Article  Google Scholar 

  32. Tahir, D.; Tougaard, S.: Electronic and optical properties of Cu, CuO and Cu2O studied by electron spectroscopy. J. Phys. Condens. Matter 24, 175002 (2012). https://doi.org/10.1088/0953-8984/24/17/175002

    Article  Google Scholar 

  33. Issaoui, N.; Ghalla, H.; Bardak, F.; Karabacak, M.; Aouled Dlala, N.; Flakus, H.T.; Oujia, B.: Combined experimental and theoretical studies on the molecular structures, spectroscopy, and inhibitor activity of 3-(2-thienyl)acrylic acid through AIM NBO, FT-IR, FT-Raman, UV and HOMO-LUMO analyses, and molecular docking. J. Mol. Struct. (2017). https://doi.org/10.1016/j.molstruc.2016.11.019

    Article  Google Scholar 

  34. Issaoui, N.; Abdessalem, K.; Ghalla, H.; Yaghmour, S.J.; Calvo, F.; Oujia, B.: Theoretical investigation of the relative stability of Na+Hen (n = 2–24) clusters: many-body versus delocalization effects. J. Chem. Phys. (2014). https://doi.org/10.1063/1.4900873

    Article  Google Scholar 

  35. Kazachenko, A.S.; Akman, F.; Sagaama, A.; Issaoui, N.; Malyar, Y.N.; Vasilieva, N.Y.; Borovkova, V.S.: Theoretical and experimental study of guar gum sulfation. J. Mol. Model. (2021). https://doi.org/10.1007/s00894-020-04645-5

    Article  Google Scholar 

  36. Jomaa, I.; Issaoui, N.; Roisnel, T.; Marouani, H.: Insight into non-covalent interactions in a tetrachlorocadmate salt with promising NLO properties: experimental and computational analysis. J. Mol. Struct. (2021). https://doi.org/10.1016/j.molstruc.2021.130730

    Article  Google Scholar 

  37. Pang, M.; Zeng, H.C.: Highly ordered self-assemblies of submicrometer Cu2O Spheres and their hollow chalcogenide derivatives. Langmuir 26, 5963–5970 (2010). https://doi.org/10.1021/LA904292T/SUPPL_FILE/LA904292T_SI_001.PDF

    Article  Google Scholar 

  38. Hajibabaei, H.; Little, D.J.; Pandey, A.; Wang, D.; Mi, Z.; Hamann, T.W.: Direct deposition of crystalline Ta3 N5 thin films on FTO for PEC Water splitting. ACS Appl. Mater. Interf. 11, 15457–15466 (2019). https://doi.org/10.1021/acsami.8b21194

    Article  Google Scholar 

  39. Ma, H.; Fan, Q.; Fan, B.; Zhang, Y.; Fan, D.; Wu, D.; Wei, Q.: Formation of homogeneous Epinephrine-Melanin solutions to fabricate electrodes for enhanced photoelectrochemical biosensing. Langmuir 34, 7744–7750 (2018). https://doi.org/10.1021/acs.langmuir.8b00264

    Article  Google Scholar 

  40. Becke, A.D.: A new mixing of Hartree-Fock and local density-functional theories. J. Chem. Phys. 98, 1372–1377 (1993). https://doi.org/10.1063/1.464304

    Article  Google Scholar 

  41. Nnadiekwe, C.C.; Abdulazeez, I.; Haroon, M.; Peng, Q.; Jalilov, A.; Al-Saadi, A.: Impact of polypyrrole functionalization on the anodic performance of boron nitride nanosheets: insights from first-principles calculations. Front. Chem. 9, 670833 (2021). https://doi.org/10.3389/FCHEM.2021.670833/FULL

    Article  Google Scholar 

  42. Chang, J.-H.; Antunes, M.; Umar, M.; Nnadiekwe, C.C.; Haroon, M.; Abdulazeez, I.; Alhooshani, K.; Al-Saadi, A.A.; Peng, Q.: A first-principles study on the multilayer graphene nanosheets anode performance for boron-ion battery. Nanomaterials 12, 1280 (2022). https://doi.org/10.3390/NANO12081280

    Article  Google Scholar 

  43. Lee, D.S.; Chen, Y.W.: Au/CuO–CeO2 catalyst for preferential oxidation of CO in hydrogen-rich stream: effect of CuO content. Int. J. Hydrog. Energy 41, 3605–3612 (2016). https://doi.org/10.1016/J.IJHYDENE.2015.12.137

    Article  Google Scholar 

  44. Batchtold, A.; Strunk, C.; Salvetat, J.P.; Bonard, J.M.; Forro, L.; Nussbau-mer, T.; Schonenberger, C.; Li, Z.; Xie, S.S.; Qian, L.X.; Chang, B.H.; Zou, B.S.; Zhou, W.Y.; Zhao, A.; Wang, G.; Ren, F.; Huang, Z.P.; Wang, D.Z.; Wen, J.G.; Xu, J.W.; Wang, J.H.; Calvet, L.E.; Chen, J.; Klemic, J.F.; Reed, M.A.; Phys Lett, A.; Bower, C.; Zhou, O.; Zhu, W.; Werder, D.J.; Jin, S.H.; Sonoda, S.; Tanaka, C.; Murakami, H.; Yamakawa, H.; Wenzhong Wang, B.; Wang, G.; Wang, X.; Zhan, Y.; Liu, Y.; Zheng, C.: Synthesis and characterization of Cu2O nanowires by a novel reduction route**. Phys. Lett. 277, 705 (1996). https://doi.org/10.1002/1521-4095

    Article  Google Scholar 

  45. Ghijsen, J.; Tjeng, L.H.; Van Elp, J.; Eskes, H.; Westerink, J.; Sawatzky, G.A.; Czyzyk, M.T.: Electronic structure of Cu2O and CuO. Phys. Rev. B 38, 11322 (1988). https://doi.org/10.1103/PhysRevB.38.11322

    Article  Google Scholar 

  46. Zhou, L.J.; Zou, Y.C.; Zhao, J.; Wang, P.P.; Feng, L.L.; Sun, L.W.; Wang, D.J.; Li, G.D.: Facile synthesis of highly stable and porous Cu2O/CuO cubes with enhanced gas sensing properties. Sens. Actuators B Chem. 188, 533–539 (2013). https://doi.org/10.1016/J.SNB.2013.07.059

    Article  Google Scholar 

  47. Tajammul Hussain, S.; Iqbal, M.; Mazhar, M.: Size control synthesis of starch capped-gold nanoparticles. J. Nanoparticle Res. 11, 1383–1391 (2009). https://doi.org/10.1007/S11051-008-9525-6/FIGURES/10

    Article  Google Scholar 

  48. Torkzadeh-Mahani, A.; Mohammadi, A.; Torkzadeh-Mahani, M.; Mohamadi, M.: Voltammetric determination of anticancer drug hydroxyurea using a carbon paste electrode, incorporating TiO2 nanoparticles Anal. Bioanal Electrochem. 9, 117–125 (2017)

    Google Scholar 

  49. Naik, K.M.; Alagur, M.M.; Nandibewoor, S.T.: Electrochemical response of hydroxyurea by different voltammetric techniques at carbon paste electrode. Anal. Methods (2013). https://doi.org/10.1039/c3ay41680a

    Article  Google Scholar 

  50. Torkzadeh-Mahani, A.; Mohammadi, A.; Torkzadeh-Mahani, M.; Mohamadi, M.: Voltammetric determination of the anticancer drug hydroxyurea using a carbon paste electrode incorporating TiO2 nanoparticles. Anal. Bioanal. Electrochem. 9, 117–125 (2017)

    Google Scholar 

  51. Naik, K.M.; Ashi, C.R.; Nandibewoor, S.T.: Anodic voltammetric behavior of hydroxyurea and its electroanalytical determination in pharmaceutical dosage form and urine. J. Electroanal. Chem. 755, 109–114 (2015). https://doi.org/10.1016/J.JELECHEM.2015.07.038

    Article  Google Scholar 

  52. Legrand, T.; Rakotoson, M.-G.; Galactéros, F.; Bartolucci, P.; Hulin, A.: Determination of hydroxyurea in human plasma by HPLC-UV using derivatization with xanthydrol. J. Chromatogr. B 1064, 85–91 (2017). https://doi.org/10.1016/j.jchromb.2017.09.008

    Article  Google Scholar 

  53. James, H.; Nahavandi, M.; Wyche, M.Q.; Taylor, R.E.: Quantitative analysis of trimethylsilyl derivative of hydroxyurea in plasma by gas chromatography–mass spectrometry. J. Chromatogr. B 831, 42–47 (2006). https://doi.org/10.1016/J.JCHROMB.2005.11.033

    Article  Google Scholar 

  54. Jong, Y.J.; Hsu, H.O.; Wu, H.L.; Kou, H.S.; Wu, S.M.: Analysis of hydroxyurea in human plasma by high performance liquid chromatography with electrochemical detection. Anal. Chim. Acta 488, 223–230 (2003). https://doi.org/10.1016/S0003-2670(03)00702-5

    Article  Google Scholar 

  55. Haghshenas, M.; Mazloum-Ardakani, M.; Alizadeh, Z.; Vajhadin, F.; Naeimi, H.: A sensing platform using ag/pt core-shell nanostructures supported on multiwalled carbon nanotubes to detect hydroxyurea. Electroanalysis 32, 2137–2145 (2020). https://doi.org/10.1002/ELAN.202060020

    Article  Google Scholar 

  56. Cazelles, R.; Shukla, R.P.; Ware, R.E.; Vinks, A.A.; Ben-Yoav, H.: Electrochemical determination of hydroxyurea in a complex biological matrix using MoS2-modified electrodes and chemometrics. Biomedicines 9, 6 (2020). https://doi.org/10.3390/BIOMEDICINES9010006

    Article  Google Scholar 

  57. Lombardi, J.R.; Birke, R.L.: A unified view of surface-enhanced raman scattering. Acc. Chem. Res. 42, 734–742 (2009). https://doi.org/10.1021/AR800249Y/ASSET/IMAGES/AR-2008-00249Y_M003.GIF

    Article  Google Scholar 

  58. Fu, X.; Jiang, T.; Zhao, Q.; Yin, H.: Charge-transfer contributions in surface-enhanced Raman scattering from Ag, Ag2S and Ag2Se substrates. J. Raman Spectrosc. 43, 1191–1195 (2012). https://doi.org/10.1002/JRS.4033

    Article  Google Scholar 

  59. Willets, K.A.: Probing nanoscale interfaces with electrochemical surface-enhanced Raman scattering. Curr. Opin. Electrochem. 13, 18–24 (2019). https://doi.org/10.1016/J.COELEC.2018.10.005

    Article  Google Scholar 

  60. Wu, D.Y.; Li, J.F.; Ren, B.; Tian, Z.Q.: Electrochemical surface-enhanced Raman spectroscopy of nanostructures. Chem. Soc. Rev. 37, 1025–1041 (2008). https://doi.org/10.1039/B707872M

    Article  Google Scholar 

  61. Pearson, R.G.: Absolute electronegativity and hardness: application to inorganic chemistry. Inorg. Chem. 27, 734–740 (1988)

    Article  Google Scholar 

  62. Al-Saadi, A.A.: Understanding the influence of electron-donating and electron-withdrawing substituents on the anticorrosive properties of imidazole: a quantum-chemical approach. Arab. J. Sci. Eng. 45, 153–166 (2020). https://doi.org/10.1007/S13369-019-04167-0/TABLES/10

    Article  Google Scholar 

  63. Zarrouk, A.; El Ouali, I.; Bouachrine, M.; Hammouti, B.; Ramli, Y.; Essassi, E.M.; Warad, I.; Aouniti, A.; Salghi, R.: Theoretical approach to the corrosion inhibition efficiency of some quinoxaline derivatives of steel in acid media using the DFT method. Res. Chem. Intermed. 39, 1125–1133 (2013). https://doi.org/10.1007/S11164-012-0671-1/FIGURES/3

    Article  Google Scholar 

  64. Obot, I.B.: HSAB descriptors of thiadiazole derivatives calculated by DFT: possible relationship as mild steel corrosion inhibitors special issue on “material and corrosion”-sustainability journal-impact factor-2.576. View project Discovery of Novel Molecules for Corrosion Protection Using Computational Chemistry View project, (n.d.).

  65. Wang, Y.; Ji, W.; Sui, H.; Kitahama, Y.; Ruan, W.; Ozaki, Y.; Zhao, B.: Exploring the effect of intermolecular H-bonding: a study on charge-transfer contribution to surface-enhanced Raman scattering of p-mercaptobenzoic acid. J. Phys. Chem. C 118, 10191–10197 (2014). https://doi.org/10.1021/JP5025284/SUPPL_FILE/JP5025284_SI_001.PDF

    Article  Google Scholar 

  66. Rekik, N.; Issaoui, N.; Ghalla, H.; Oujia, B.; Wójcik, M.J.: IR spectral density of H-bonds. Both intrinsic anharmonicity of the fast mode and the H-bond bridge. Part I: Anharmonic coupling parameter and temperature effects. J. Mol. Struct. Theochem. 821, 9–21 (2007). https://doi.org/10.1016/J.THEOCHEM.2007.06.016

    Article  Google Scholar 

Download references

Acknowledgements

Authors thank King Fahd University of Petroleum & Minerals (KFUPM) for its support through Project No. DF191043.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdulaziz A. Al-Saadi.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 710 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Haroon, M., Al-Saadi, A.A. The Role of Gold-Loaded Copper Oxide Nanoplates in the Formulation of Sensitive EC-SERS Substrates for the Detection of Anti-Cancer Drugs: Spectro–Electro and DFT Studies. Arab J Sci Eng 49, 673–684 (2024). https://doi.org/10.1007/s13369-023-08384-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-023-08384-6

Keywords

Navigation