Skip to main content
Log in

Advanced Design of Power Generation Cycle with Cold Utilization from LNG

  • Research Article-Petroleum Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

The current study examines the potential of utilizing the cold energy stored in liquefied natural gas (LNG) for power generation. Approximately 830 kJ/kg of the energy needed to produce LNG must be stored as cold energy, and regasification terminals can utilize this cold energy for a variety of purposes, including power generation. While the efficiency and net power gain of power generation cycles utilizing cold LNG usage have both increased, there is still room for improvement. An analysis of four alternative systems, combining the Rankine cycles (RC) and the direct expansion cycle (DEC), was conducted to determine the net power production and efficiencies of the system. The findings demonstrate that when the DEC and RCs are combined, net power gain and power cycle efficiency increase substantially. The DEC and single-stage stage RC have efficiency values of 21.05% and 23.38%, respectively, whereas the efficiencies of the four alternative combinations are 38.78%, 34.93%, 47.52%, and 47.23%. Maximum efficiency and net power gain were achieved when preheated DEC and multistage RCs were coupled. R-1150 was found to produce the best results when 11 different working fluids were examined for the given conditions with single-stage Rankine cycles. This indicates that condensation temperature has a significant influence on the cycle’s effectiveness. Sensitivity analysis reveals that the working fluid pressure, LNG mass flow rate, and turbine output pressure are crucial variables to achieve the best outcomes. Finally, the economic study demonstrated the viability of the suggested power system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Data Availability

This is the research paper, and all data are properly cited. All data are available from the authors upon reasonable request.

Abbreviations

W :

Power (kW)

\(\eta \) :

Efficiency (%)

Q :

Heat transfer rate (kW)

i :

Number of stages

net :

Net value

th :

Thermal

in :

Input

out :

Output

\({\text {NG}}\) :

Natural gas

\({\text {LNG}}\) :

Liquefied natural gas

\({\text {CULNG}}\) :

Cold utilization of LNG

\({\text {DEC}}\) :

Direct expansion cycle

\({\text {RC}}\) :

Rankine cycle

\({\text {ORC}}\) :

Organic Rankine cycle

\({\text {NPG}}\) :

Net power gain

T :

Turbine

E :

Heat exchanger

P :

Pump

\({\text {INR}}\) :

Indian Rupees

\({\text {USD}}\) :

US Dollar

References

  1. He, T.; Chong, Z.R.; Zheng, J.; Ju, Y.; Linga, P.: LNG cold energy utilization: prospects and challenges. Energy 170(C), 557–568 (2019). https://doi.org/10.1016/j.energy.2018.12

    Article  Google Scholar 

  2. Arya, A.K.; Honwad, S.: Multiobjective optimization of a gas pipeline network: an ant colony approach. J. Pet. Explor. Prod. Technol. 8(4), 1389–1400 (2018). https://doi.org/10.1007/s13202-017-0410-7

    Article  Google Scholar 

  3. Thomas, S.; Dawe, R.A.: Review of ways to transport natural gas energy from countries which do not need the gas for domestic use. Energy 28(14), 1461–1477 (2003). https://doi.org/10.1016/S0360-5442(03)001

    Article  Google Scholar 

  4. Shingan, B.; Parthasarthy, V.: Recent progress in cold utilization of liquefied natural gas. Chem. Eng. Technol. (2023). https://doi.org/10.1002/ceat.202200484

    Article  Google Scholar 

  5. Foss, M.M.: Introduction to LNG. Centre for energy economics, The University of Texas-Austin (2012)

    Google Scholar 

  6. Jensen, R.H.; Kurata, F.: Density of liquefied natural gas. J. Petrol. Technol. 21(06), 683–691 (1969)

    Article  Google Scholar 

  7. Lentner, R.; Richter, M.; Kleinrahm, R.; Span, R.: Density measurements of liquefied natural gas (LNG) over the temperature range from (105 to 135) k at pressures up to 8.9 mpa. J. Chem. Thermodyn. 112, 68–76 (2017). https://doi.org/10.1016/j.jct.2017.04.002

    Article  Google Scholar 

  8. Pospís̆il, J.; Charvát, P.; Arsenyeva, O.; Klimes̆, L.; S̆pilác̆ek, M.; Klemes̆, J.J.: Energy demand of liquefaction and regasification of natural gas and the potential of LNG for operative thermal energy storage. Renew. Sustain. Energy Rev. 99, 1–15 (2019). https://doi.org/10.1016/j.rser.2018.09.027

    Article  Google Scholar 

  9. Vatani, A.; Mehrpooya, M.; Pakravesh, H.: Modification of an industrial ethane recovery plant using mixed integer optimization and shuffled frog leaping algorithm. Arab. J. Sci. Eng. 38(2), 439–455 (2013). https://doi.org/10.1007/s13369-012-0433-9

    Article  Google Scholar 

  10. Pan, J.; Li, M.; Li, R.; Tang, L.; Bai, J.: Design and analysis of LNG cold energy cascade utilization system integrating light hydrocarbon separation, organic rankine cycle and direct cooling. Appl. Therm. Eng. 213, 118672 (2022). https://doi.org/10.1016/j.applthermaleng.2022.118672

    Article  Google Scholar 

  11. Yao, S.-G.; Zhang, Z.; Wei, Y.; Liu, R.: Integrated design and optimization research of LNG cold energy and main engine exhaust heat utilization for LNG powered ships. Case Stud. Therm. Eng 33, 101976 (2022). https://doi.org/10.1016/j.csite.2022.101976

    Article  Google Scholar 

  12. Liu, Y.; Guo, K.: A novel cryogenic power cycle for LNG cold energy recovery. Energy 36(5), 2828–2833 (2011). https://doi.org/10.1016/j.energy.2011.02.024

    Article  Google Scholar 

  13. Romero Gómez, M.; Garcia, R.F.; Carbia Carril, J.; Romero Gómez, J.: High efficiency power plant with liquefied natural gas cold energy utilization. J. Energy Inst. 87(1), 59–68 (2014). https://doi.org/10.1016/j.joei.2014.02.007

    Article  Google Scholar 

  14. Huang, Z.; Wan, Y.; Soh, K.; Islam, M.; Chua, K.: Off-design and flexibility analyses of combined cooling and power based liquified natural gas (LNG) cold energy utilization system under fluctuating regasification rates. Appl. Energy 310, 118529 (2022). https://doi.org/10.1016/j.apenergy.2022.118529

    Article  Google Scholar 

  15. Griepentrog, H.; Sackarendt, P.: Vaporization of LNG with closed-cycle gas turbines. In: Turbo Expo: Power for Land, Sea, and Air. vol. 79740, pp. 01–01038. (1976).

  16. Angelino, G.; Invernizzi, C.M.: The role of real gas brayton cycles for the use of liquid natural gas physical exergy. Appl. Therm. Eng. 31(5), 827–833 (2011)

    Article  Google Scholar 

  17. Krey, G.: Utilization of the cold by LNG vaporization with the closed-cycle gas turbine. Atomkernenergie 32(4), 259–264 (1978). https://doi.org/10.1115/1.3230241

    Article  Google Scholar 

  18. Kanbur, B.B.; Xiang, L.; Dubey, S.; Choo, F.H.; Duan, F.: Cold utilization systems of LNG: a review. Renew. Sustain. Energy Rev. 79, 1171–1188 (2017). https://doi.org/10.1016/j.rser.2017.05.161

    Article  Google Scholar 

  19. Xue, F.; Chen, Y.; Ju, Y.: A review of cryogenic power generation cycles with liquefied natural gas cold energy utilization. Front. Energy 10(3), 363–374 (2016)

    Article  Google Scholar 

  20. Choi, I.-H.; Lee, S.; Seo, Y.; Chang, D.: Analysis and optimization of cascade rankine cycle for liquefied natural gas cold energy recovery. Energy 61, 179–195 (2013). https://doi.org/10.1016/j.energy.2013.08.047

    Article  Google Scholar 

  21. Zhang, L.; Tang, Q.: Comparisons of different power generation processes by LNG cold energy. 2012 AASRI Conf. Power Energy Syst. 2, 31 (2012). https://doi.org/10.1016/j.aasri.2012.09.010

    Article  Google Scholar 

  22. Bao, J.; Yuan, T.; Zhang, L.; Zhang, N.; Zhang, X.; He, G.: Comparative study of liquefied natural gas (LNG) cold energy power generation systems in series and parallel. Energy Convers. Manag. 184, 107–126 (2019). https://doi.org/10.1016/j.enconman.2019.01.040

    Article  Google Scholar 

  23. Shi, X.; Agnew, B.; Che, D.; Gao, J.: Performance enhancement of conventional combined cycle power plant by inlet air cooling, inter-cooling and LNG cold energy utilization. Appl. Therm. Eng. 30(14), 2003–2010 (2010). https://doi.org/10.1016/j.applthermaleng.2010.05.005

    Article  Google Scholar 

  24. Wang, J.; Wang, J.; Dai, Y.; Zhao, P.: Thermodynamic analysis and optimization of a transcritical Co2 geothermal power generation system based on the cold energy utilization of lng. Appl. Therm. Eng. 70, 531–540 (2014). https://doi.org/10.1016/j.applthermaleng.2016.08.141

    Article  Google Scholar 

  25. Stradioto, D.A.; Seelig, M.F.; Schneider, P.S.: Performance analysis of a CCGT power plant integrated to a LNG regasification process. J. Nat. Gas Sci. Eng. 23, 112–117 (2015). https://doi.org/10.1016/j.jngse.2015.01.032

    Article  Google Scholar 

  26. Xue, F.; Chen, Y.; Ju, Y.: Design and optimization of a novel cryogenic rankine power generation system employing binary and ternary mixtures as working fluids based on the cold exergy utilization of liquefied natural gas (LNG). Energy 138, 706–720 (2017). https://doi.org/10.1016/j.energy.2017.07.122

    Article  Google Scholar 

  27. Ma, G.; Lu, H.; Cui, G.; Huang, K.: Multi-stage rankine cycle (MSRC) model for LNG cold-energy power generation system. Energy 165, 673–688 (2018). https://doi.org/10.1016/j.energy.2018.09.203

    Article  Google Scholar 

  28. Pattanayak, L.; Padhi, B.N.: Thermodynamic analysis of combined cycle power plant using regasification cold energy from LNG terminal. Energy 164, 1–9 (2018). https://doi.org/10.1016/j.energy.2018.08.187

  29. Li, Y.; Zhang, G.; Liu, Y.; Song, X.; Yang, Y.: A cold and power cogeneration system utilizing LNG cryogenic energy and low-temperature waste heat. Energy Proced. 158, 2335–2340 (2019). https://doi.org/10.1016/j.egypro.2019.01.280

    Article  Google Scholar 

  30. Qi, M.; Park, J.; Kim, J.; Lee, I.; Moon, I.: Advanced integration of LNG regasification power plant with liquid air energy storage: enhancements in flexibility, safety, and power generation. Appl. Energy 269, 115049 (2020). https://doi.org/10.1016/j.apenergy.2020.115049

    Article  Google Scholar 

  31. Yu, H.; Gundersen, T.; Gençer, E.: Optimal liquified natural gas (LNG) cold energy utilization in an allam cycle power plant with carbon capture and storage. Energy Convers. Manage. 228, 113725 (2021). https://doi.org/10.1016/j.enconman.2020.113725

    Article  Google Scholar 

  32. Li, Z.; Zhang, X.; He, X.; Wu, G.; Tian, S.; Zhang, D.; Zhang, Q.; Liu, Y.: Comparative analysis of thermal economy of two SOFC-GT-ST triple hybrid power systems with carbon capture and lng cold energy utilization. Energy Convers. Manag. 256, 115385 (2022). https://doi.org/10.1016/j.enconman.2022.115385

    Article  Google Scholar 

  33. Liang, W.; Yu, Z.; Bai, S.; Li, G.; Wang, D.: Study on a near-zero emission SOFC-based multi-generation system combined with organic rankine cycle and transcritical co2 cycle for lng cold energy recovery. Energy Convers. Manag. 253, 115188 (2022). https://doi.org/10.1016/j.enconman.2021.115188

    Article  Google Scholar 

  34. Tan, J.; Xie, S.; Wu, W.; Qin, P.; Ouyang, T.: Evaluating and optimizing the cold energy efficiency of power generation and wastewater treatment in LNG-fired power plant based on data-driven approach. J. Clean. Prod. 334, 130149 (2022)

    Article  Google Scholar 

  35. Alsagri, A.S.; Chiasson, A.; Shahzad, M.W.: Geothermal energy technologies for cooling and refrigeration systems: an overview. Arab. J. Sci. Eng. 47, 5859 (2021). https://doi.org/10.1007/s13369-021-06296-x

    Article  Google Scholar 

  36. Franco, A.; Casarosa, C.: Thermodynamic analysis of direct expansion configurations for electricity production by LNG cold energy recovery. Appl. Therm. Eng. 78, 649–657 (2015). https://doi.org/10.1016/j.applthermaleng.2014.11.062

    Article  Google Scholar 

  37. Taqvi, S.A.; Tufa, L.D.; Muhadizir, S.: Optimization and dynamics of distillation column using aspen plus®. Proced. Eng. 148, 978–984 (2016). https://doi.org/10.1016/j.proeng.2016.06.484

    Article  Google Scholar 

  38. Darvish, K.; Ehyaei, M.A.; Atabi, F.; Rosen, M.A.: Selection of optimum working fluid for organic rankine cycles by exergy and exergy-economic analyses. Sustainability 7(11), 15362–15383 (2015). https://doi.org/10.3390/su71115362

    Article  Google Scholar 

  39. Guoguan, M.; Hongfang, L.; Guobiao, C.; Kun, H.: Multi-stage rankine cycle (MSRC) model for LNG cold-energy power generation system. Energy 165, 673–688 (2018)

    Article  Google Scholar 

  40. Calm, J.M.; Hourahan, G.: Refrigerant data update. HPAC Eng. 79(1), 50–64 (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bhalchandra Shingan.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shingan, B., Vijay, P. & Pandian, K. Advanced Design of Power Generation Cycle with Cold Utilization from LNG. Arab J Sci Eng 48, 16973–16988 (2023). https://doi.org/10.1007/s13369-023-08301-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-023-08301-x

Keywords

Navigation