Skip to main content
Log in

High-Gain Series-Fed-Planar Millimetre-Wave Franklin Antenna Array

  • Research Article-Electrical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

The antenna requirements for 5 G and 6 G in mm wave frequencies differ significantly from those of low-frequency applications, necessitating the use of highly directive or multibeam antennas. To construct high-gain antenna structures, effective and robust solutions include planar, end-fire, linear, and series-fed arrays. In our research, we present an innovative combination of series-fed and planar Franklin array configurations for an antenna structure. Specifically, our proposed four-element series-fed-planar Franklin array utilizes a three-element series-fed array of slotted rectangular patch antennas as a single element. The antenna slot allows for precise frequency adjustment and impedance matching better than −10 dB, resulting in a wide range of frequency tuning without requiring −10 dB impedance tuning and maintaining a quality factor of 17.52. Through the implementation of a dual-array configuration, the antenna gain is boosted by 7.8 dBi compared to the reference antenna (A1). The effectiveness of our proposed technique has been verified through thorough simulations in Ansys Full-wave Electromagnetic Simulator-2021 and measurement results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data Availability

Data sharing is not applicable to this article.

References

  1. Jilani, S.F.; Alomainy, A.: A multiband millimeter-wave 2-D array based on enhanced Franklin antenna for 5G wireless systems. IEEE Antennas Wirel. Propag. Lett. 16, 2983–2986 (2017)

    Article  Google Scholar 

  2. Wang, C.X.; et al.: Cellular architecture and key technologies for 5G wireless communication networks. IEEE Commun. Mag. 52, 122–130 (2014)

    Article  Google Scholar 

  3. Wei, L.; Hu, R.Q.; Qian, Y.; Wu, G.: Key elements to enable millimeter wave communications for 5G wireless systems. IEEE Wirel. Commun. 21, 136–143 (2014)

    Article  Google Scholar 

  4. Li, Y.; Wu, F.; Xi, D.; Jiang, Z.; Yu, C.; Hong, W.: A compact dual-polarized end-fire antenna array for 5G millimeter-wave terminal. IEEE Antennas Wirel. Propag. Lett. https://doi.org/10.1109/LAWP.2023.3246720 (2023)

  5. Farahat, A.E.; Hussein, K.F.A.: Dual-band (28/38 GHz) wideband MIMO antenna for 5G mobile applications. IEEE Access 10, 32213–32223 (2022)

    Article  Google Scholar 

  6. Kulkarni, J.; Sim, C.Y.D.; Desai, A.; et al.: A compact four port ground-coupled CPWG-Fed MIMO antenna for wireless applications. Arab. J. Sci. Eng. 47, 14087–14103 (2022)

    Article  Google Scholar 

  7. Joseph, J.; Let, G.S.: A wideband uniplanar ground-centered dual-polarized quad MIMO for sub-6 GHz 5G bands. Arab. J. Sci. Eng. (2023)

  8. Bhattacharya, A.; Roy, B.; Caldeirinha, R.; Bhattacharjee, A.: Low-profile, extremely wideband, dual-band-notched MIMO antenna for UWB applications. Int. J. Microw. Wirel. Technol. 11(7), 719–728 (2019)

    Article  Google Scholar 

  9. Bhattacharya, A.; Roy, B.: Investigations on an extremely compact MIMO antenna with enhanced isolation and bandwidth. Microw. Opt. Technol. Lett. 62, 845–851 (2020)

    Article  Google Scholar 

  10. Ta, S.X.; Choo, H.; Park, I.: Broadband printed-dipole antenna and its arrays for 5G applications. IEEE Antennas Wirel. Propag. Lett. 16, 2183–2186 (2017)

    Article  Google Scholar 

  11. Biswas, R.; Nandi, A.; Parsha, M.K.; Basu, B.: High isolation, wide aperture antenna array using auxiliary feeds and EBG surface for 5G communication. Arab. J. Sci. Eng. 47, 14935–14945 (2022)

    Article  Google Scholar 

  12. Rekha, S.; Jino Ramson, S.R.: Parasitically isolated 4-element MIMO antenna for 5G/WLAN applications. Arab. J. Sci. Eng. 47, 14711–14720 (2022)

    Article  Google Scholar 

  13. Sohi, A.K.; Kaur, A.: Triple band-reject functionality from a four-element, offset-Fed fractal UWB-MIMO antenna incorporated with split-ring resonators and U-shaped slot. Arab. J. Sci. Eng. https://doi.org/10.1007/s13369-023-07637-8 (2023)

  14. Karthikeya, G.S.; Magray, M.I.; Zebiri, C.; et al.: Implementational aspects of various feeding techniques for mmWave 5G antennas. Arab. J. Sci. Eng. 47, 14731–14744 (2022)

    Article  Google Scholar 

  15. Park, J.; Lee, S.; Chun, J.; Jeon, V.; Hong, S.: A 28-GHz four-channel beamforming front-end IC With dual-vector variable gain phase shifters for 64-element phased array antenna module. IEEE J. Solid-State Circuits. https://doi.org/10.1109/JSSC.2022.3214436 (2022)

  16. Gupta, P.; Gupta, V.: Thinned 8\(\times \)8 planar antenna array with reduced side lobe levels for 5G applications. Wirel. Personal Commun. 119, 639–655 (2021)

    Article  Google Scholar 

  17. Wang, B.; Zhao, Z.; Sun, K.; Du, C.; Yang, X.; Yang, D.: Wideband series-Fed microstrip patch antenna array with flat gain based on magnetic current feeding technology. IEEE Antennas Wirel. Propag. Lett. https://doi.org/10.1109/LAWP.2022.3226461 (2022)

  18. Wang, P.P.; Antoniades, M.A.; Eleftheriades, G.V.: An investigation of printed Franklin antennas at X-band using artificial (metamaterial) phase-shifting lines. IEEE Trans. Antennas Propag. 56, 3118–3128 (2008)

    Article  Google Scholar 

  19. Khan, Q.U.; Ihsan, M.B.: Higher order mode excitation for high gain microstrip patch antenna. AEU-Int. J. Electron. C. 68(11), 1073–1077 (2014). https://doi.org/10.1016/j.aeue.2014.05.009

    Article  Google Scholar 

  20. Wu, P.; Liu, K.; Yu, Z.: 220 GHz High-gain substrate integrated antennas with low fabrication cost based on higher order mode and PCB technology. IEEE Trans. Antennas Propag. 71(1), 18–28 (2023). https://doi.org/10.1109/TAP.2022.3209670

    Article  Google Scholar 

  21. Kumar, J.: Higher-order mode substrate integrated rectangular patch antenna. In: AEU - International Journal of Electronics and Communications, vol. 162, https://doi.org/10.1016/j.aeue.2021.153934 (2021)

  22. Wang, Z.; Liu, J.; Long, Y.: A simple wide-bandwidth and high-gain microstrip patch antenna with both sides shorted. IEEE Antennas Wirel. Propag. Lett. 18(6), 1144–1148 (2019). https://doi.org/10.1109/LAWP.2019.2911045

    Article  Google Scholar 

  23. Liu, Y.; Liu, H.; Wei, M.; Gong, S.: A novel slot Yagi-like multilayered antenna with high gain and large bandwidth. IEEE Antennas Wirel. Propag. Lett. 13, 790–793 (2014). https://doi.org/10.1109/LAWP.2014.2318313

    Article  Google Scholar 

  24. Mei, P.; Zhang, S.; Pedersen, G.F.: A dual-polarized and high-gain X-/Ka-band shared-aperture antenna with high aperture reuse efficiency. IEEE Trans. Antennas Propag. 69(3), 1334–1344 (2021). https://doi.org/10.1109/TAP.2020.3026429

    Article  Google Scholar 

  25. Kumar, J.; Basu, B.; Talukdar, F.A.; Nandi, A.: X-band antenna printed on a multilayered substrate. IET Microw. Antennas Propag. 11(8), 1504–1509 (2017). https://doi.org/10.1049/iet-map.2017.0197

    Article  Google Scholar 

  26. Cao, W.; Zhang, B.; Liu, A.; Yu, T.; Guo, D.; Wei, Y.: Broadband high-gain periodic endfire antenna by using I-shaped resonator (ISR) structures. IEEE Antennas Wirel. Propag. Lett. 11, 1470–1473 (2012). https://doi.org/10.1109/LAWP.2012.2232272

    Article  Google Scholar 

  27. Wang, J.; Cheng, Y.; Luo, H.; Chen, F.; Wu, L.: High-gain bidirectional radiative circularly polarized antenna based on focusing metasurface. In: AEU - International Journal of Electronics and Communications, vol. 151. https://doi.org/10.1016/j.aeue.2022.154222 (2022)

  28. Wen, L.; Yu, Z.; Zhu, L.; Zhou, J.: High-gain dual-band resonant cavity antenna for 5G millimeter-wave communications. IEEE Antennas Wirel. Propag. Lett. 20(10), 1878–1882 (2021). https://doi.org/10.1109/LAWP.2021.3098390

    Article  Google Scholar 

  29. Guo, Q.-Y.; Wong, H.: A millimeter-wave Fabry-Pérot cavity antenna using fresnel zone plate integrated PRS. IEEE Trans. Antennas Propag. 68(1), 564–568 (2020). https://doi.org/10.1109/TAP.2019.2937359

    Article  Google Scholar 

  30. Jiang, H.; Cao, X.; Liu, T.; Jidi, L.; Li, S.: Reconfigurable leaky wave antenna with low sidelobe based on spoof surface plasmon polariton. AEU - Int. J. Electron. Commun., vol. 157. https://doi.org/10.1016/j.aeue.2022.154394 (2022)

  31. Puskely, J.; Lacik, J.; Raida, Z.; Arthaber, H.: High-gain dielectric-loaded Vivaldi antenna for Ka -band applications. IEEE Antennas Wirel. Propag. Lett. 15, 2004–2007 (2016). https://doi.org/10.1109/LAWP.2016.2550658

    Article  Google Scholar 

  32. Pan, Y.M.; Zheng, S.Y.: A low-profile stacked dielectric resonator antenna with high-gain and wide bandwidth. IEEE Antennas Wirel. Propag. Lett. 15, 68–71 (2016). https://doi.org/10.1109/LAWP.2015.2429686

    Article  Google Scholar 

Download references

Funding

There is no funding to this article.

Author information

Authors and Affiliations

Authors

Contributions

Both authors have equally contributed.

Corresponding author

Correspondence to Jayendra Kumar.

Ethics declarations

Conflict of interest

Authors have no conflict of interest for this article.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Duddu, S.K., Kumar, J. High-Gain Series-Fed-Planar Millimetre-Wave Franklin Antenna Array. Arab J Sci Eng 49, 6331–6341 (2024). https://doi.org/10.1007/s13369-023-08243-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-023-08243-4

Keywords

Navigation