Skip to main content
Log in

The J-Integral Method Compared to the API 579-1/ASME FFS-1 Standard to Calculate Stress Intensity Factor (SIF): Leak-Before-Break (LBB) Application with Uncertainty Quantification

  • Research Article-Civil Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Leak-before-break (LBB), as a part of the fitness-for-service (FFS) assessment, is a critical requirement to ensure pressure vessel structural integrity LBB generally means a leak will be detected before an in-service catastrophic failure occurs. Despite some established procedures in API 579-1/ASME FFS-1 or BS 7910 standards, performing a robust LBB assessment is not a regular and straightforward practice in the oil, gas, and petrochemical industries. A mix of different sources has been commonly used in case studies, which could lead to non-consistent results. This paper presents, firstly, a three-dimensional finite element analysis (FEA) within an LBB assessment framework for a cylindrical pressure vessel. The stress intensity factor (SIF) of a defective vessel with a through-thickness crack is numerically calculated using the J-integral method and based on linear elastic fracture mechanics (LEFM) approach. The accuracy of the numerical solutions is then compared with the analytical results proposed by the API 579-1/ASME FFS-1 standard. The maximum (limiting) through-thickness flaw size, which will not grow to an intolerable size during the vessel service life, is calculated analytically and numerically. Afterward, errors in measuring the exact length of the crack during inspections, the internal pressure fluctuations due to the vessel's operational conditions, and uncertainties in characterizing the mechanical properties of the base material, including its minimum yield strength and toughness, are quantified. A reliability analysis is finally evaluated to assess the probability of failure considering these uncertainties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data Availability

The authors declare that the data supporting the findings of this study are available in this paper. The data sets generated for the reliability analysis can be provided upon request.

Abbreviations

\({A}_{0}-{A}_{6}\) :

Parameters tabulated in Annex-9B of API 579-1/ASME FFS-1

\(B\) :

Matrix containing the spatial derivatives of the basis functions

\({C}_{ijkl}\) :

Fourth-order elasticity tensor

\(2c\) :

Crack length

E:

Young’s modulus

\(F\) :

Force vector

\({f}_{i}\) :

Body force

\({G}_{p}\) :

Influence coefficient

\(H\) :

Eshelby’s energy–momentum tensor

\(I\) :

Identity matrix

\(J\) :

J-integral

\(K\) :

Assembled stiffness matrix

\({K}_{\mathrm{I}}\) :

Stress intensity factor

\({K}_{\mathrm{IC}}\) :

Fracture toughness

\({K}_{\mathrm{I}}^{P}\) :

Stress intensity factor attributed to internal pressure

\({K}_{\mathrm{mat}}\) :

Material fracture toughness

\({K}_{r}\) :

Toughness ratio parameter

\({L}_{r}\) :

Collapse ratio parameter

\({M}_{t}\) :

Surface correction factor

\(N\) :

Vector of basis functions

\(n\) :

Outward normal unit vector

\(p\) :

Internal pressure

\({P}_{\mathrm{b}}\) :

Bending stress

\({P}_{\mathrm{f}}\) :

Probability of failure

\({P}_{\mathrm{m}}\) :

Membrane stress

\(q\) :

Unit vector in the virtual crack extension direction

\({R}_{i}\) :

Cylinder inner radius

\(t\) :

Cylinder wall thickness

\(t\) :

Surface traction on the crack surfaces

\({\overline{t} }_{i}\) :

Given traction on the natural boundary

\(T\) :

Assessment temperature

\({T}_{\mathrm{ref}}\) :

Reference temperature, Table 9.2 of API 579-1/ASME FFS-1

\(U\) :

Nodal displacement vector

\(u\) :

Vector of displacement field

\({\overline{u} }_{i}\) :

Given displacement on the essential boundary

\(W\) :

Strain energy function

\(\beta\) :

Reliability index

\(\Gamma\) :

Integration line surrounding the crack tip in the counterclockwise direction

\({\delta }_{ij}\) :

Kronecker symbol

\({\varepsilon }_{ij}\) :

Strain tensor

\(\nu\) :

Poisson’s ratio

\({\upsigma }_{\mathrm{f}}\) :

Flow stress

\({\sigma }_{\mathrm{ref}}\) :

Reference stress

\({\sigma }_{y}\) :

Yield strength of the material

\({\sigma }_{ij}\) :

Cauchy stress tensor

References

  1. Selva, R.: Living with defects: replace/repair or prove fit-for-service? In: 13th International Conference on Pressure Vessel and Piping Technology, London, 20–23 May (2012)

  2. API.: API 579-1/ASME FFS-1, fitness-for-service. American Society of Mechanical Engineers, New-York (2016)

  3. Irwin, G.: Fracture of pressure vessels. In: Materials for Missiles and Spacecraft, pp. 204–229. McGraw-Hill, New York (1963)

    Google Scholar 

  4. ASME.: ASME-Sec VIII, DIV.3, Boiler and Pressure Vessel Code. American Society of Mechanical Engineers, New-York (2019)

  5. BSI.: BS 7910, Guide to methods for assessing the acceptability of flaws in metallic structures. British Standards Institution, London (2013)

  6. Bourga, R.: The mechanism of leak-before-break fracture and its application in Engineering Critical Assessment. PhD dissertation, Brunel University London (2017)

  7. Drozdziel, N.: Leak-before-break characterization and demonstration of a high-pressurant helium storage vessel. In: Proceedings of the 5th International Congress on Fracture, pp. 2145–2151 (1981)

  8. Knysh, V.V.; Barvinko, A.Y.; Barvinko, Y.P.; Yashnik, A.N.: Substantiation of leak-before-break criterion for vertical cylindrical tanks for oil storage. Paton Weld. J. 9, 26–29 (2012)

    Google Scholar 

  9. Walter, M.; Lesicki, R.: Measures taken to ensure safe operation of an ammonia storage tank. Process. Saf. Prog. 17(4), 288–296 (1998)

    Article  Google Scholar 

  10. Hackworth, M.R.; Henshaw, J.M.: A pressure vessel fracture mechanics study of the aluminium beverage can. Eng. Fract. Mech. 65(5), 525–539 (2000)

    Article  Google Scholar 

  11. Kou, K.P.; Burdekin, F.M.: The applicability of leak-before-break on flooded member detection for offshore structures under fatigue. Eng. Fract. Mech. 75(1), 31–40 (2008)

    Article  Google Scholar 

  12. Andrews, R.; Millwood, N.; Tiku, S.; Pussegoda, N.; Hoekstra, M.; Smith, S.: Analysis and testing of a 13Cr pipeline to demonstrate leak before break. In: Proceedings of the 9th International Pipeline Conference, pp. 83–91 (2012)

  13. Bonn, C.: Estimation of crack opening displacement and leak rates through a through-flaw in aerospace pressure vessels. Technical report, Master Thesis Rensselaer Polytechnic Institute (2008)

  14. Wilkowski, G.M.; Eiber, R.J.: Evaluation of tensile failure of girth weld repair grooves in pipe subjected to offshore laying stresses. ASME J. Energy Resour. Technol. 103, 48–57 (1981)

    Article  Google Scholar 

  15. Roos, E.; Herter, K.H.; Julisch, P.; Bartholome, G.; Senski, G.: Assessment of largescale pipe tests by fracture mechanics approximation procedures with regard to leak-before-break. Nucl. Eng. Des 112, 183–195 (1989)

    Article  Google Scholar 

  16. Pellini, W.S.: Evolution of engineering principles for fracture-safe design of steel structures. Naval Research Laboratory Report NRL-6957, September (1969)

  17. Kiefner, J.F.; Maxey, W.A.; Eiber, R.J.; Duffy. A.R.: Failure stress levels of flaws in pressurized cylinders. In: Progress in Flaw Growth and Fracture Toughness Testing. ASTM STP 536 American Society for Testing and Materials, pp. 461–481 (1973)

  18. Rintamaa, R.; Keinanen, H.; Torronen, K.: Fracture behavior of large scale pressure vessels in the hydrotest. Int. J. Press. Vessel. Piping. 34, 265–291 (1988)

    Article  Google Scholar 

  19. Setz, W.; Gruter, L.: Tolerable flaws for the leak-before-break criterion. Int. J. Press. Vessel. Piping. 42, 193–202 (1990)

    Article  Google Scholar 

  20. Dhaduti, S.C.; Sarganachari, S.G.; Patil, A.Y.; Yunus Khan, T.M.: Prediction of injection molding parameters for symmetric spur gear. J. Mol. Model. 26(11), 302 (2020). https://doi.org/10.1007/s00894-020-04560-9

    Article  Google Scholar 

  21. Patil, A.Y.; Hegde, C.; Savanur, G.; Kanakmood, S.M.; Contractor, A.M.; Shirashyad, V.B.; Chivate, R.M.; Kotturshettar, B.B.; Mathad, S.N.; Patil, M.B., et al.: Biomimicking nature-inspired design structures—an experimental and simulation approach using additive manufacturing. Biomimetics 7, 186 (2022). https://doi.org/10.3390/biomimetics7040186

    Article  Google Scholar 

  22. Karimi, M.R.; Abrinia, K.; Hamdia, K.M.; Hashemianzadeh, S.M.; Baniassadi, M.: Effects of functional group type and coverage on the interfacial strength and load transfer of graphene-polyethylene nanocomposites: a molecular dynamics simulation. Appl. Phys. A 128(4), 341 (2022). https://doi.org/10.1007/s00339-022-05427-x

    Article  Google Scholar 

  23. Mysore, T.H.M.; Patil, A.Y.; Raju, G.U.; Banapurmath, N.R.; Bhovi, P.M.; Afzal, A.; Alamri, S.; Saleel, C.A.: Investigation of mechanical and physical properties of big sheep horn as an alternative biomaterial for structural applications. Materials 14, 4039 (2021). https://doi.org/10.3390/ma14144039

    Article  Google Scholar 

  24. Nimbagal, V.; Banapurmath, N.R.; Sajjan, A.M., et al.: Studies on hybrid bio-nanocomposites for structural applications. J. Mater. Eng. Perform. 30, 6461–6480 (2021). https://doi.org/10.1007/s11665-021-05843-9

    Article  Google Scholar 

  25. Patil, V.S.; Bano, F.; Kurahatti, R.V.; Patil, A.Y.; Raju, G.U.; Afzal, A.; Soudagar, M.E.M.; Kumar, R.; Saleel, C.A.: A study of sound pressure level (SPL) inside the truck cabin for new acoustic materials: an experimental and FEA approach. Alex. Eng. J. 60(6), 5949–5976 (2021). https://doi.org/10.1016/j.aej.2021.03.074

    Article  Google Scholar 

  26. Song, H.; Rahman, S.S.: An extended J-integral for evaluating fluid-driven cracks in hydraulic fracturing. J. Rock Mech. Geotech. Eng. 10, 832–843 (2018). https://doi.org/10.1016/j.jrmge.2018.04.009

    Article  Google Scholar 

  27. Okada, H.; Ishizaka, T.; Takahashi, A.; Arai, K.; Yusa, Y.: 3D J-integral evaluation for solids undergoing large elastic–plastic deformations with residual stresses and spatially varying mechanical properties of a material. Eng. Fract. Mech. 236, 107212 (2020). https://doi.org/10.1016/j.engfracmech.2020.107212

    Article  Google Scholar 

  28. Olamide, A.; Bennecer, A.; Kaczmarczyk, S.: Finite element analysis of fatigue in O_shore pipelines with internal and external circumferential cracks. Appl. Mech. 1, 193–223 (2020). https://doi.org/10.3390/applmech1040013

    Article  Google Scholar 

  29. Alrayes, O.; Könke, C.; Ooi, E.T.; Hamdia, K.M.: Modeling cyclic crack propagation in concrete using the scaled boundary finite element method coupled with the cumulative damage-plasticity constitutive law. Materials 16(2), 863 (2023). https://doi.org/10.3390/ma16020863

    Article  Google Scholar 

  30. Yue, F.; Wu, Z.: Fracture mechanical analysis of thin-walled cylindrical shells with cracks. Metals. 11, 592 (2021). https://doi.org/10.3390/met11040592

    Article  Google Scholar 

  31. Qian, G.; González-Albuixech, V.F.; Niffenegger, M.; Giner, E.: Comparison of KI calculation methods. Eng. Fract. Mech. 156, 52–67 (2016)

    Article  Google Scholar 

  32. Shih, C.F.; Moran, B.; Nakamura, T.: Energy release rate along a three-dimensional crack front in a thermally stressed body. Int. J. Fract. 30, 79–102 (1986)

    Article  Google Scholar 

  33. Chiarelli, M.; Frediani, A.: A computation of the three-dimensional J-integral for elastic materials with a view to applications in fracture mechanics. Eng. Fract. Mech. 44(5), 763–788 (1993)

    Article  Google Scholar 

  34. Rice, J.R.: A path independent integral and the approximate analysis of strain concentration by notches and cracks. J. Appl. Mech. 35, 379–386 (1968)

    Article  Google Scholar 

  35. Cherepanov, G.P.: The propagation of cracks in a continuous medium. J. Appl. Math. Mech. 31(3), 503–512 (1967)

    Article  Google Scholar 

Download references

Acknowledgements

This work has been supported by the Center for International Scientific Studies and Collaborations (CISSC), Ministry of Science, Research and Technology of Iran. Khader M. Hamdia thanks the support provided by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation)—Projektnummer 492535144.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hamid Ghasemi.

Ethics declarations

Conflict of interest

Authors declare that they have no conflict of interest to report regarding the present study.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghasemi, H., Hamdia, K.M. The J-Integral Method Compared to the API 579-1/ASME FFS-1 Standard to Calculate Stress Intensity Factor (SIF): Leak-Before-Break (LBB) Application with Uncertainty Quantification. Arab J Sci Eng 49, 4643–4654 (2024). https://doi.org/10.1007/s13369-023-08138-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-023-08138-4

Keywords

Navigation