Skip to main content
Log in

An Analysis on the Machinability Aspects of the Turning Process Using WEDM for Profile Generation

  • Research Article-Mechanical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Wire electrical discharge turning (WEDT) is a unique adaption of the wire electrical discharge machining (WEDM) process and enables one to generate precise 3-D axis-symmetric profiles of the order of ± 5 µm on electrically conductive materials irrespective of their hardness. In the present study, profile geometries like spherical, cylindrical, and taper are generated on the same workpiece to create a combined-shaped structure. The effect of parametric settings on dimensional error based on volume (DE), roundness (Ront), arithmetical mean roughness value (Ra), and volumetric material removal rate (VMRR) is investigated for the above-said geometries based on response surface methodology. Experimental results show that the dimensional or geometric error is maximum for spherical and minimum for cylindrical turned surfaces. The roughness of the cylindrical part is better as compared to the spherical and tapered surfaces. A minimum roundness value of 28.19 µm for the spherical, 11.80 µm for the cylindrical, and 26.25 µm for the taper-turned surfaces has been observed. The VMRR of the cylindrical part was found to be higher than that of spherical and tapered parts. FESEM has been utilized to study the surface integrity of the geometries machined by WEDT, and a recast layer was observed in all three cases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data Availability

The authors confirm that the data supporting the findings of this study are available within the article.

References

  1. Roy, B.K.; Mandal, A.: Surface integrity analysis of Nitinol-60 shape memory alloy in WEDM. Mater. Manuf. Process. 34, 1091–1102 (2019). https://doi.org/10.1080/10426914.2019.1628256

    Article  CAS  Google Scholar 

  2. Mouralova, K.; Klakurkova, L.; Matousek, R.; Prokes, T.; Hrdy, R.; Kana, V.: Influence of the cut direction through the semi-finished product on the occurrence of cracks for X210Cr12 steel using WEDM. Arch. Civ. Mech. Eng. 18, 1318–1331 (2018). https://doi.org/10.1016/j.acme.2018.04.004

    Article  Google Scholar 

  3. Sharma, N.; Gupta, K.; Davim, J.P.: On wire spark erosion machining induced surface integrity of Ni55.8Ti shape memory alloys. Arch. Civ. Mech. Eng. 19, 680–693 (2019). https://doi.org/10.1016/j.acme.2019.02.004

    Article  Google Scholar 

  4. Kuriakose, S.; Shunmugam, M.S.: Characteristics of wire-electro discharge machined Ti6Al4V surface. Mater. Lett. 58, 2231–2237 (2004). https://doi.org/10.1016/j.matlet.2004.01.037

    Article  CAS  Google Scholar 

  5. Kumar Roy, B.; Kumar, A.; Ranjan Sahu, D.; Mandal, A.; Roy, B.K.; Kumar, A.; Sahu, D.R.; Mandal, A.; Kumar Roy, B.; Kumar, A.; Ranjan Sahu, D.; Mandal, A.: Wire electrical discharge machining characteristics of Nitinol-60 shape memory alloy. Mater. Today Proc. 22, 2860–2869 (2019). https://doi.org/10.1016/j.matpr.2020.03.418

    Article  CAS  Google Scholar 

  6. Roy, B.K.; Mandal, A.: An investigation into the effect of wire inclination in Wire-Electrical Discharge Turning process of NiTi-60 shape memory alloy. J. Manuf. Process. 64, 739–749 (2021). https://doi.org/10.1016/j.jmapro.2021.01.050

    Article  Google Scholar 

  7. Masuzawa, T.; Fujino, M.; Kobayashi, K.; Suzuki, T.: Wire electro-discharge grinding for micro-machining. Ann. CIRP 34, 4 (1985)

    Article  Google Scholar 

  8. Qu, J.; Shih, A.J.; Scattergood, R.O.: Development of the cylindrical wire electrical discharge machining process, part 1: concept, design, and material removal rate. J. Manuf. Sci. Eng. Trans. ASME 124, 702–707 (2002). https://doi.org/10.1115/1.1475321

    Article  Google Scholar 

  9. Chen, X.; Wang, Z.; Wang, Y.; Chi, G.; Guo, C.: Micro reciprocated wire-EDM of micro-rotating structure combined multi-cutting strategy. Int. J. Adv. Manuf. Technol. 97, 2703–2714 (2018). https://doi.org/10.1007/s00170-018-2145-0

    Article  Google Scholar 

  10. Zhu, Y.; Liang, T.; Gu, L.; Zhao, W.: Precision machining of high aspect-ratio rotational part with wire electro discharge machining. J. Mech. Sci. Technol. 31, 1391–1399 (2017). https://doi.org/10.1007/s12206-017-0240-z

    Article  Google Scholar 

  11. Dhake, H.G.; Samuel, G.L.: Machining of axisymmetric forms and helical profiles on cylindrical workpiece using wire cut EDM. Int. J. Mach. Mach. Mater. 12, 252–265 (2012). https://doi.org/10.1504/IJMMM.2012.049258

    Article  Google Scholar 

  12. Song, K.Y.; Chung, D.K.; Park, M.S.; Chu, C.N.: EDM turning using a strip electrode. J. Mater. Process. Technol. 213, 1495–1500 (2013). https://doi.org/10.1016/j.jmatprotec.2013.03.005

    Article  Google Scholar 

  13. Weingärtner, E.; Wegener, K.; Kuster, F.: Wire electrical discharge machining applied to high-speed rotating workpieces. J. Mater. Process. Technol. 212, 1298–1304 (2012). https://doi.org/10.1016/j.jmatprotec.2012.01.005

    Article  CAS  Google Scholar 

  14. George, J.; Mathew, J.; Manu, R.: Determination of crater morphology and 3D surface roughness in wire electrical discharge turning of Inconel 825. Arab. J. Sci. Eng. 45, 5109–5127 (2020). https://doi.org/10.1007/s13369-020-04372-2

    Article  Google Scholar 

  15. Haddad, M.J.; Alihoseini, F.; Hadi, M.; Hadad, M.; Tehrani, A.F.; Mohammadi, A.: An experimental investigation of cylindrical wire electrical discharge turning process. Int. J. Adv. Manuf. Technol. 46, 1119–1132 (2010). https://doi.org/10.1007/s00170-009-2171-z

    Article  Google Scholar 

  16. Matoorian, P.; Sulaiman, S.; Ahmad, M.M.H.M.: An experimental study for optimization of electrical discharge turning (EDT) process. J. Mater. Process. Technol. 204, 350–356 (2008). https://doi.org/10.1016/j.jmatprotec.2007.11.058

    Article  CAS  Google Scholar 

  17. Jadidi, A.; Azhiri, R.B.; Teimouri, R.: Electrical discharge turning by assistance of external magnetic field, part I: study of MRR and dimensional accuracy. Int. J. Light. Mater. Manuf. 3, 265–276 (2020). https://doi.org/10.1016/j.ijlmm.2020.02.004

    Article  Google Scholar 

  18. Mohammadi, A.; Tehrani, A.F.; Abdullah, A.: Investigation on the effects of ultrasonic vibration on material removal rate and surface roughness in wire electrical discharge turning. Int. J. Adv. Manuf. Technol. 70, 1235–1246 (2014). https://doi.org/10.1007/s00170-013-5381-3

    Article  Google Scholar 

  19. Bergs, T.; Tombul, U.; Herrig, T.; Klink, A.; Welling, D.: Influence of an additional indexing rotary axis on wire EDM performance for the automated manufacture of fir tree slots. J. Eng. Gas Turbines Power (2020). https://doi.org/10.1115/1.4046805

    Article  Google Scholar 

  20. Yukui, W.; Xiang, C.; Weimin, G.; Zhenlong, W.; Cheng, G.: Complex rotary structures machined by micro-WEDM. Procedia CIRP 42, 743–747 (2016). https://doi.org/10.1016/j.procir.2016.02.312

    Article  Google Scholar 

  21. Sun, Y.; Gong, Y.; Liu, Y.; Cai, M.; Ma, X.; Li, P.: Experimental investigation on effects of machining parameters on the performance of Ti-6Al-4V micro rotary parts fabricated by LS-WEDT. Arch. Civ. Mech. Eng. 18, 385–400 (2018). https://doi.org/10.1016/j.acme.2017.09.006

    Article  Google Scholar 

  22. Janardhan, V.; Samuel, G.L.: Pulse train data analysis to investigate the effect of machining parameters on the performance of wire electro discharge turning (WEDT) process. Int. J. Mach. Tools Manuf. 50, 775–788 (2010). https://doi.org/10.1016/j.ijmachtools.2010.05.008

    Article  Google Scholar 

  23. Egashira, K.; Hosono, S.; Takemoto, S.; Masao, Y.: Fabrication and cutting performance of cemented tungsten carbide micro-cutting tools. Precis. Eng. 35, 547–553 (2011). https://doi.org/10.1016/j.precisioneng.2011.06.002

    Article  Google Scholar 

  24. Sun, Y.; Su, Z.; Gong, Y.; Ba, D.; Yin, G.; Zhang, H.; Zhou, L.: Analytical and experimental study on micro-grinding surface-generated mechanism of DD5 single-crystal superalloy using micro-diamond pencil grinding tool. Arch. Civ. Mech. Eng. 21, 1–22 (2021). https://doi.org/10.1007/s43452-020-00163-6

    Article  Google Scholar 

  25. Liu, Y.; Cai, H.; Li, H.: Fabrication of micro spherical electrode by one pulse EDM and their application in electrochemical micromachining. J. Manuf. Process. 17, 162–170 (2015). https://doi.org/10.1016/j.jmapro.2014.09.003

    Article  CAS  Google Scholar 

  26. Wang, J.; Sheu, D.Y.: Developing a process chain with WEDG technology and pulse ECM to fabricate ultra micro pins. Procedia CIRP. 42, 815–818 (2016). https://doi.org/10.1016/j.procir.2016.02.325

    Article  Google Scholar 

  27. Li, Z.; Bai, J.; Cao, Y.; Wang, Y.; Zhu, G.: Fabrication of microelectrode with large aspect ratio and precision machining of micro-hole array by micro-EDM. J. Mater. Process. Technol. 268, 70–79 (2019). https://doi.org/10.1016/j.jmatprotec.2019.01.009

    Article  CAS  Google Scholar 

  28. Zahiruddin, M.; Kunieda, M.: Analysis of micro fin deformation due to micro EDM. Procedia CIRP 42, 569–574 (2016). https://doi.org/10.1016/j.procir.2016.02.253

    Article  Google Scholar 

  29. Qingfeng, Y.; Xingqiao, W.; Ping, W.; Zhiqiang, Q.; Lin, Z.; Yongbin, Z.: Fabrication of micro rod electrode by electrical discharge grinding using two block electrodes. J. Mater. Process. Technol. 234, 143–149 (2016). https://doi.org/10.1016/j.jmatprotec.2016.03.023

    Article  Google Scholar 

  30. Kar, S.; Patowari, P.K.: Effect of non-electrical parameters in fabrication of micro rod using BEDG. Mater. Manuf. Process. 34, 1262–1273 (2019). https://doi.org/10.1080/10426914.2019.1643475

    Article  CAS  Google Scholar 

  31. Jia, J.; Wang, Y.; Li, Z.; Yang, S.; Qian, J.; Reynaerts, D.: Accuracy improvement of micro-shafts fabricated by the twin-mirroring-wire tangential feed electrical discharge grinding. J. Mater. Process. Technol. 286, 116808 (2020). https://doi.org/10.1016/j.jmatprotec.2020.116808

    Article  Google Scholar 

  32. Jia, J.; Wang, Y.; Yang, S.; Li, W.: Study on taper reduction of high aspect ratio micro-shafts fabricated by twin-mirroring-wire tangential feed electrical discharge grinding (TMTF-WEDG). J. Manuf. Process. 57, 614–629 (2020). https://doi.org/10.1016/j.jmapro.2020.07.030

    Article  Google Scholar 

  33. Bose, S.; Nandi, T.: Measurement of performance parameters and improvement in optimized solution of WEDM on a novel titanium hybrid composite. Meas. J. Int. Meas. Confed. 171, 108811 (2021). https://doi.org/10.1016/j.measurement.2020.108811

    Article  Google Scholar 

  34. Sharma, P.; Chakradhar, D.; Narendranath, S.: Measurement of WEDM performance characteristics of aero-engine alloy using RSM-based TLBO algorithm. Meas. J. Int. Meas. Confed. 179, 109483 (2021). https://doi.org/10.1016/j.measurement.2021.109483

    Article  Google Scholar 

  35. Haddad, M.J.; Tajik, M.; Tehrani, A.F.; Mohammadi, A.; Hadi, M.: An experimental investigation of cylindrical wire electrical discharge turning process using Taguchi approach. Int. J. Mater. Form. 2, 167–179 (2009). https://doi.org/10.1007/s12289-009-0401-4

    Article  Google Scholar 

  36. Creamer, J.; Sammons, P.M.; Bristow, D.A.; Landers, R.G.; Freeman, P.L.; Easley, S.J.: Table-based volumetric error compensation of large five-axis machine tools. J. Manuf. Sci. Eng. Trans. ASME 139, 1–11 (2017). https://doi.org/10.1115/1.4034399

    Article  Google Scholar 

  37. Li, Q.; Wang, W.; Zhang, J.; Shen, R.; Li, H.; Jiang, Z.: Measurement method for volumetric error of five-axis machine tool considering measurement point distribution and adaptive identification process. Int. J. Mach. Tools Manuf. 147, 103465 (2019). https://doi.org/10.1016/j.ijmachtools.2019.103465

    Article  Google Scholar 

Download references

Funding

This study was funded by the Department of Science and Technology (Science and Engineering Research Board), Government of India, under Grant no. (ECR/2017/000807).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: BKR, ST; methodology: BKR; formal analysis and investigation: BKR, ST; writing—original draft preparation: BKR; writing—review and editing: BKR, AM; funding acquisition: AM; supervision: AM.

Corresponding author

Correspondence to Biplab Kumar Roy.

Ethics declarations

Conflict of Interest

The authors have no competing interests to declare that are relevant to the content of this article.

Ethical Approval

The work contains no libelous or unlawful statements, does not infringe on the rights of others, or contains material that might cause harm or injury. This article also does not have any studies with human participants performed by any of the authors.

Consent to Participation

All authors agreed to participate in this research.

Consent to Publication

All authors have read and agreed to publish the manuscript.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 28 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roy, B.K., Tiwari, S. & Mandal, A. An Analysis on the Machinability Aspects of the Turning Process Using WEDM for Profile Generation. Arab J Sci Eng 49, 2165–2177 (2024). https://doi.org/10.1007/s13369-023-08133-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-023-08133-9

Keywords

Navigation