Skip to main content
Log in

Effect of Nano-SiO2 on Strength and Hydration Characteristics of Ternary Cementitious Systems

  • Research Article-Civil Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

This paper shows results of laboratory study on the effects of nano-SiO2 on Portland cement-fly ash systems. It is aimed to improve performance of fly ash–cement systems, particularly at early age, with the inclusion of nano-SiO2. In order to observe the effects of nano-SiO2 particles on the strength and hydration kinetics of fly ash blended cementitious systems, binary and ternary systems were prepared by adding 0.25–1.5% nano-SiO2 by weight of blended cements. Workability, setting time, water absorption capacity, fire resistance, compressive strength and isothermal calorimeter tests were conducted on the cementitious systems. The results indicate that increasing quantity of fly ash increased workability, setting time, water absorption capacity of cementitious systems, whereas the increasing quantity of nano-SiO2 reduced these values. Significant increment in compressive strength were observed, especially at early ages of fly ash–cement systems with nano-SiO2 addition, compared to fly ash added systems, which may compensate for the decrease in compressive strength caused by fly ash. Nano-SiO2 addition accelerated hydration reactions at early age. By partially eliminating the negative effects of fly ash with nano-SiO2, high rates of fly ash can be used in cementitious systems, thus forming more sustainable systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Patil, M.P.; Do Kim, G.: Marine microorganisms for synthesis of metallic nanoparticles and their biomedical applications. Colloids Surf. B Biointerfaces 172(September), 487–495 (2018). https://doi.org/10.1016/j.colsurfb.2018.09.007

    Article  Google Scholar 

  2. Li, L.G.; Zhu, J.; Huang, Z.H.; Kwan, A.K.H.; Li, L.J.: Combined effects of micro-silica and nano-silica on durability of mortar. Constr. Build. Mater. 157, 337–347 (2017). https://doi.org/10.1016/j.conbuildmat.2017.09.105

    Article  Google Scholar 

  3. Raheem, A.A.; Abdulwahab, R.; Kareem, M.A.: Incorporation of metakaolin and nanosilica in blended cement mortar and concrete—a review. J. Clean. Prod. 290, 125852 (2021). https://doi.org/10.1016/j.jclepro.2021.125852

    Article  Google Scholar 

  4. Oltulu, M.; Şahin, R.: Effect of nano-SiO2, nano-Al2O3 and nano-Fe2O3 powders on compressive strengths and capillary water absorption of cement mortar containing fly ash: a comparative study. Energy Build. 58, 292–301 (2013). https://doi.org/10.1016/j.enbuild.2012.12.014

    Article  Google Scholar 

  5. Singh, L.P.; Karade, S.R.; Bhattacharyya, S.K.; Yousuf, M.M.; Ahalawat, S.: Beneficial role of nanosilica in cement based materials—a review. Constr. Build. Mater. (2013). https://doi.org/10.1016/j.conbuildmat.2013.05.052

    Article  Google Scholar 

  6. Fu, Q.; Zhao, X.; Zhang, Z.; Xu, W.; Niu, D.: Effects of nanosilica on microstructure and durability of cement-based materials. Powder Technol. 404, 117447 (2022). https://doi.org/10.1016/j.powtec.2022.117447

    Article  Google Scholar 

  7. Lee, B.Y.; Kurtis, K.E.: Influence of TiO2 nanoparticles on early C3S hydration. J. Am. Ceram. Soc. 93(10), 3399–3405 (2010). https://doi.org/10.1111/j.1551-2916.2010.03868.x

    Article  Google Scholar 

  8. Stefanidou, M.; Papayianni, I.: Influence of nano-SiO2 on the Portland cement pastes. Compos. Part B Eng. 43(6), 2706–2710 (2012). https://doi.org/10.1016/j.compositesb.2011.12.015

    Article  Google Scholar 

  9. Berra, M.; Carassiti, F.; Mangialardi, T.; Paolini, A.E.; Sebastiani, M.: Effects of nanosilica addition on workability and compressive strength of Portland cement pastes. Constr. Build. Mater. 35, 666–675 (2012). https://doi.org/10.1016/j.conbuildmat.2012.04.132

    Article  Google Scholar 

  10. Senff, L.; Labrincha, J.A.; Ferreira, V.M.; Hotza, D.; Repette, W.L.: Effect of nano-silica on rheology and fresh properties of cement pastes and mortars. Constr. Build. Mater. 23(7), 2487–2491 (2009). https://doi.org/10.1016/j.conbuildmat.2009.02.005

    Article  Google Scholar 

  11. Lang, L.; Liu, N.; Chen, B.: Strength development of solidified dredged sludge containing humic acid with cement, lime and nano-SiO2. Constr. Build. Mater. 230, 116971 (2020). https://doi.org/10.1016/j.conbuildmat.2019.116971

    Article  Google Scholar 

  12. Yang, Z., et al.: Improving the chloride binding capacity of cement paste by adding nano-Al2O3: the cases of blended cement pastes. Constr. Build. Mater. 232, 117219 (2020). https://doi.org/10.1016/j.conbuildmat.2019.117219

    Article  Google Scholar 

  13. Jia, Z.M.; Zhao, Y.R.; Shi, J.N.: Adsorption kinetics of the photocatalytic reaction of nano-TiO2 cement-based materials: a review. Constr. Build. Mater. 370(January), 130462 (2023). https://doi.org/10.1016/j.conbuildmat.2023.130462

    Article  Google Scholar 

  14. Gamal, H.A.; El-Feky, M.S.; Alharbi, Y.R.; Abadel, A.A.; Kohail, M.: Enhancement of the concrete durability with hybrid nano materials. Sustainability 13(3), 1–17 (2021). https://doi.org/10.3390/su13031373

    Article  Google Scholar 

  15. Abhilash, P.P.; Nayak, D.K.; Sangoju, B.; Kumar, R.; Kumar, V.: Effect of nano-silica in concrete; a review. Constr. Build. Mater. 278, 122347 (2021). https://doi.org/10.1016/j.conbuildmat.2021.122347

    Article  Google Scholar 

  16. Wang, D.; Li, J.; Zhang, L.; Jiang, C.; Yang, P.; Cheng, X.: Synthesis and effect of highly active nano-SiO2 on ion/water transmission property of cement-based materials. J. Build. Eng. 59(August), 105054 (2022). https://doi.org/10.1016/j.jobe.2022.105054

    Article  Google Scholar 

  17. Ji, T.: Preliminary study on the water permeability and microstructure of concrete incorporating nano-SiO2. Cem. Concr. Res. 35(10), 1943–1947 (2005). https://doi.org/10.1016/j.cemconres.2005.07.004

    Article  Google Scholar 

  18. Li, G.: Properties of high-volume fly ash concrete incorporating nano-SiO2. Cem. Concr. Res. (2004). https://doi.org/10.1016/j.cemconres.2003.11.013

    Article  Google Scholar 

  19. Brzozowski, P.; Strzałkowski, J.; Rychtowski, P.; Wróbel, R.; Tryba, B.; Horszczaruk, E.: Effect of nano-SiO2 on the microstructure and mechanical properties of concrete under high temperature conditions. Materials (2022). https://doi.org/10.3390/ma15010166

    Article  Google Scholar 

  20. Prasad Bhatta, D.; Singla, S.; Garg, R.: Microstructural and strength parameters of Nano-SiO2 based cement composites. Mater. Today Proc. 46, 6743–6747 (2020). https://doi.org/10.1016/j.matpr.2021.04.276

    Article  Google Scholar 

  21. Jo, B.W.; Kim, C.H.; Tae, G.H.; Bin Park, J.: Characteristics of cement mortar with nano-SiO2 particles. Constr. Build. Mater. 21(6), 1351–1355 (2007). https://doi.org/10.1016/j.conbuildmat.2005.12.020

    Article  Google Scholar 

  22. Najigivi, A.; Khaloo, A.; Iraji Zad, A.; Abdul Rashid, S.: Investigating the effects of using different types of SiO2 nanoparticles on the mechanical properties of binary blended concrete. Compos. Part B Eng. 54(1), 52–58 (2013). https://doi.org/10.1016/j.compositesb.2013.04.035

    Article  Google Scholar 

  23. Gaitero, J.J.; Campillo, I.; Guerrero, A.: Reduction of the calcium leaching rate of cement paste by addition of silica nanoparticles. Cem. Concr. Res. 38(8–9), 1112–1118 (2008). https://doi.org/10.1016/j.cemconres.2008.03.021

    Article  Google Scholar 

  24. Huang, Q., et al.: Long-term performance and microstructural characteristics of cement mortars containing nano-SiO2 exposed to sodium sulfate attack. Constr. Build. Mater. 364(November 2022), 130011 (2023). https://doi.org/10.1016/j.conbuildmat.2022.130011

    Article  Google Scholar 

  25. Lin, D.F.; Lin, K.L.; Chang, W.C.; Luo, H.L.; Cai, M.Q.: Improvements of nano-SiO2 on sludge/fly ash mortar. Waste Manag. (2008). https://doi.org/10.1016/j.wasman.2007.03.023

    Article  Google Scholar 

  26. Liu, H.; Li, Q.; Ni, S.; Wang, L.; Yue, G.; Guo, Y.: Effect of nano-silica dispersed at different temperatures on the properties of cement-based materials. J. Build. Eng. 46(November 2021), 103750 (2022). https://doi.org/10.1016/j.jobe.2021.103750

    Article  Google Scholar 

  27. Kooshafar, M.; Madani, H.: An investigation on the influence of nano silica morphology on the characteristics of cement composites. J. Build. Eng. 30(January), 101293 (2020). https://doi.org/10.1016/j.jobe.2020.101293

    Article  Google Scholar 

  28. Liu, M.; Tan, H.; He, X.: Effects of nano-SiO2 on early strength and microstructure of steam-cured high volume fly ash cement system. Constr. Build. Mater. 194, 350–359 (2019). https://doi.org/10.1016/j.conbuildmat.2018.10.214

    Article  Google Scholar 

  29. Land, G.; Stephan, D.: “The influence of nano-silica on the hydration of ordinary Portland cement. J. Mater. Sci. 47(2), 1011–1017 (2012). https://doi.org/10.1007/s10853-011-5881-1

    Article  Google Scholar 

  30. Karahan, O.: Transport properties of high volume fly ash or slag concrete exposed to high temperature. Constr. Build. Mater. 152, 898–906 (2017). https://doi.org/10.1016/j.conbuildmat.2017.07.051

    Article  Google Scholar 

  31. Uzal, B.; Turanli, L.: Studies on blended cements containing a high volume of natural pozzolans. Cem. Concr. Res. 33(11), 1777–1781 (2003). https://doi.org/10.1016/S0008-8846(03)00173-X

    Article  Google Scholar 

  32. Durak, U.; Karahan, O.; Uzal, B.; İlkentapar, S.; Atiş, C.D.: Influence of nano SiO2 and nano CaCO3 particles on strength, workability, and microstructural properties of fly ash-based geopolymer. Struct. Concr. 22(S1), E352–E367 (2021). https://doi.org/10.1002/suco.201900479

    Article  Google Scholar 

  33. Atiş, C.D.; Görür, E.B.; Karahan, O.; Bilim, C.; Ilkentapar, S.; Luga, E.: Very high strength (120 MPa) class F fly ash geopolymer mortar activated at different NaOH amount, heat curing temperature and heat curing duration. Constr. Build. Mater. 96, 673–678 (2015). https://doi.org/10.1016/j.conbuildmat.2015.08.089

    Article  Google Scholar 

  34. Ahmaruzzaman, M.: A review on the utilization of fly ash. Prog. Energy Combust. Sci. 36(3), 327–363 (2010). https://doi.org/10.1016/j.pecs.2009.11.003

    Article  Google Scholar 

  35. ASTM C618: Standard specification for coal fly ash and raw or calcined natural Pozzolan for use in concrete. Merican Society for Testing and Material (2014)

  36. TS EN 196-1. Methods of testing cement—part:1 determination of strength. TSE, Ankara, Turkey (2016)

  37. TS EN 1015-3. Methods of test for mortar for masonry: Part 3. Determination of consistence of fresh mortar (by flow table). TSE, Ankara (2000)

  38. TS EN 1015-11. Methods of test for mortar for masonry- Part 11: Determination of flexural and compressive strength of hardened mortar. TSE, Ankara (2020)

  39. Camiletti, J.; Soliman, A.M.; Nehdi, M.L.: Effects of nano- and micro-limestone addition on early-age properties of ultra-high-performance concrete. Mater. Struct. Constr. 46(6), 881–898 (2013). https://doi.org/10.1617/s11527-012-9940-0

    Article  Google Scholar 

  40. Stark, J.: Recent advances in the field of cement hydration and microstructure analysis. Cem. Concr. Res. 41(7), 666–678 (2011). https://doi.org/10.1016/j.cemconres.2011.03.028

    Article  Google Scholar 

  41. Huang, C.H.; Lin, S.K.; Chang, C.S.; Chen, H.J.: Mix proportions and mechanical properties of concrete containing very high-volume of Class F fly ash. Constr. Build. Mater. 46, 71–78 (2013). https://doi.org/10.1016/j.conbuildmat.2013.04.016

    Article  Google Scholar 

  42. Durán-Herrera, A.; Juárez, C.A.; Valdez, P.; Bentz, D.P.: Evaluation of sustainable high-volume fly ash concretes. Cem. Concr. Compos. 33(1), 39–45 (2011). https://doi.org/10.1016/j.cemconcomp.2010.09.020

    Article  Google Scholar 

  43. Zhuang, C.; Chen, Y.: The effect of nano-SiO2 on concrete properties: a review. Nanotechnol. Rev. 8(1), 562–572 (2019). https://doi.org/10.1515/ntrev-2019-0050

    Article  Google Scholar 

  44. Karahan, O.; Atiş, C.D.: The durability properties of polypropylene fiber reinforced fly ash concrete. Mater. Des. 32(2), 1044–1049 (2011). https://doi.org/10.1016/j.matdes.2010.07.011

    Article  Google Scholar 

  45. Liu, J.; Li, Q.; Xu, S.: Influence of nanoparticles on fluidity and mechanical properties of cement mortar. Constr. Build. Mater. 101, 892–901 (2015). https://doi.org/10.1016/j.conbuildmat.2015.10.149

    Article  Google Scholar 

  46. Du, H.; Du, S.; Liu, X.: Durability performances of concrete with nano-silica. Constr. Build. Mater. 73, 705–712 (2014). https://doi.org/10.1016/j.conbuildmat.2014.10.014

    Article  Google Scholar 

  47. Alharbi, Y.R.; Abadel, A.A.: Engineering properties of high-volume fly ash modified cement ıncorporated with bottle glass waste nanoparticles. Sustainability (2022). https://doi.org/10.3390/su141912459

    Article  Google Scholar 

  48. Ibrahim, R.K.; Hamid, R.; Taha, M.R.: Fire resistance of high-volume fly ash mortars with nanosilica addition. Constr. Build. Mater. 36, 779–786 (2012). https://doi.org/10.1016/j.conbuildmat.2012.05.028

    Article  Google Scholar 

  49. Argın, G.; Uzal, B.: Enhancement of pozzolanic activity of calcined clays by limestone powder addition. Constr. Build. Mater. 284, 9–14 (2021). https://doi.org/10.1016/j.conbuildmat.2021.122789

    Article  Google Scholar 

  50. Sanchez, F.; Sobolev, K.: Nanotechnology in concrete—a review. Constr. Build. Mater. 24(11), 2060–2071 (2010). https://doi.org/10.1016/j.conbuildmat.2010.03.014

    Article  Google Scholar 

  51. Rong, Z.; Sun, W.; Xiao, H.; Jiang, G.: Effects of nano-SiO2 particles on the mechanical and microstructural properties of ultra-high performance cementitious composites. Cem. Concr. Compos. 56, 25–31 (2015). https://doi.org/10.1016/j.cemconcomp.2014.11.001

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank H. İlcan for his assistance with the tests and preparing mortars.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hediye Yorulmaz.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yorulmaz, H., Uzal, B., Karahan, O. et al. Effect of Nano-SiO2 on Strength and Hydration Characteristics of Ternary Cementitious Systems. Arab J Sci Eng 48, 13649–13660 (2023). https://doi.org/10.1007/s13369-023-07949-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-023-07949-9

Keywords

Navigation